首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649240篇
  免费   71561篇
  国内免费   228篇
  2016年   7021篇
  2015年   9719篇
  2014年   11335篇
  2013年   16697篇
  2012年   18654篇
  2011年   18820篇
  2010年   12681篇
  2009年   11894篇
  2008年   17006篇
  2007年   17431篇
  2006年   16650篇
  2005年   16082篇
  2004年   15742篇
  2003年   15561篇
  2002年   15011篇
  2001年   27276篇
  2000年   27496篇
  1999年   22276篇
  1998年   8087篇
  1997年   8394篇
  1996年   8193篇
  1995年   7751篇
  1994年   7924篇
  1993年   7761篇
  1992年   19331篇
  1991年   18558篇
  1990年   18424篇
  1989年   18294篇
  1988年   16889篇
  1987年   16340篇
  1986年   15134篇
  1985年   15317篇
  1984年   12613篇
  1983年   11200篇
  1982年   8688篇
  1981年   7972篇
  1980年   7527篇
  1979年   12543篇
  1978年   9839篇
  1977年   9076篇
  1976年   8749篇
  1975年   9446篇
  1974年   10135篇
  1973年   9951篇
  1972年   9171篇
  1971年   8179篇
  1970年   7239篇
  1969年   6985篇
  1968年   6303篇
  1967年   5546篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
2.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
3.
The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min?1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.  相似文献   
4.
5.
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.

  相似文献   

6.
7.
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro‐ to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism‐focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward‐looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.  相似文献   
8.
The objective of the present study was to explore the site of synthesis of vitellogenin (Vtg) in fresh water edible crab, Oziothelphusa senex senex. Vtg cDNA fragments were isolated from the hepatopancreas of female crabs using RT-PCR method, and the deduced amino acid sequence of O. senex senex showed more than 60% identity with other brachyuran Vtg sequences. RT-PCR analysis showed that Vtg mRNA can be detected only in hepatopancreas of female Oziothelphusa but not in other tissues including eyestalks, Y-organs, mandibular organs, thoracic ganglion, hypodermis and ovary. Antibodies were raised against vitellin purified from the ovary of O. senex senex. Immunoprecipitation analysis revealed the presence of Vtg in the hepatopancreas of vitellogenic stage I females and in the hemolymph, hepatopancreas and ovary extracts from vitellogenic stage II females but absent in hemolymph and hepatopancreas extract of males. These results suggest that Vtg is synthesized only in hepatopancreas but not in the ovaries of O. senex senex. In addition, Vtg synthesized in hepatopancreas is transported to ovary through hemolymph.  相似文献   
9.
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (?2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.  相似文献   
10.
We combine total internal reflection fluorescence structured illumination microscopy with spatiotemporal image correlation spectroscopy to quantify the flow velocities and directionality of filamentous-actin at the T cell immunological synapse. These techniques demonstrate it is possible to image retrograde flow of filamentous-actin at superresolution and provide flow quantification in the form of velocity histograms and flow vector maps. The flow was found to be retrograde and radially directed throughout the periphery of T-cells during synapse formation.Many biological processes are now being visualized with the use of superresolution fluorescence microscopy techniques. However, localization-based techniques primarily rely on fixed or slow moving samples to permit the collection of structural information. The 10-fold gains in resolution afforded by these superresolution techniques are usually possible through sacrificing the factors that originally made microscopy such a powerful tool: the ability to image live cells. In the case of stimulated emission depletion imaging, the scanning approach associated with this technique may fail to detect faster molecular events when imaging whole cellular regions.Structured illumination microscopy (SIM) is an alternative to these methods (1). It increases the resolution of conventional fluorescence microscopy twofold; it has the advantage of using a wide-field system, providing fast acquisition speeds of whole cells with relatively low laser powers; and it is compatible with standard fluorophores. By using a physical grating to produce interference patterns from a laser, periodic illumination is created. This patterned illumination causes information from higher spatial frequencies to be downmodulated (i.e., shifted) into the optical transfer function (support region) of the lens, resulting in higher-resolution spatial information being captured than is ordinarily obtainable.To quantify the directional motion of intracellular molecules, spatiotemporal image correlation spectroscopy (STICS (2)) was applied. Using spatial image correlation in time, STICS measures the similarity of pixels with those surrounding in lagging frames via a correlation function. The correlation function provides information on both flow velocities and directionality, while discounting static structures through the immobile object filter, achieved by subtracting a moving average of pixel intensities.The formation of an immunological synapse between T cells and antigen-presenting cells is a process requiring many dynamic (3) and subdiffraction-limited clustering events (4–6) to take place. The polymerization of actin is important for the spreading of cells over their target antigen-presenting cells (7), as well as cell mobility and migration (8). Retrograde flow of densely meshed cortical actin is observed at the basal membrane of synapse-forming T cells, where it may have a role in the corralling and clustering of signaling molecules at the plasma membrane (9), as well as at the leading edge of migrating cells (10). Filamentous actin is an extremely dynamic (7), densely packed, and thin (7-nm) structure (11,12).Here, we perform STICS on SIM data acquired on a total internal reflection fluorescence (TIRF) microscope system, which generated an evanescent field of 75-nm depth for excitation. To our knowledge, this is the first demonstration of an image correlation approach to quantify molecular dynamics on subresolution length scales using wide-field microscopy. To demonstrate the technique, we analyze two-dimensional actin flows in CD4+ T cells during immunological synapse formation, performed after cross-linking of antigen T cell receptors on a coverslip coated with specific antibodies.Fig. 1 a shows a schematic of the TIRF SIM setup. Excitation light (488 nm) passes through a polarizing module and then a phase-grating block, producing diffracted beams. These are then passed through a diffraction filter module to isolate the −1 and +1 order laser beams. These first-order laser beams are angled through the objective to produce total internal reflection conditions at the glass-water interface. The two evanescent waves interfere at the sample, producing structured illumination. The setup then produces lateral and rotational shifts through three orientations, producing nine raw images containing higher spatial frequencies than can normally be acquired by an objective using standard light microscopy. Fig. 1 b demonstrates the increased resolution obtained from TIRF SIM. Shown are the collected Fourier frequencies compared to those of a conventional microscope (dotted red line). Resolution was also measured using sparse 100-nm diameter fluorescent beads. Fig. 1 c shows a magnified image of these beads from which a line profile was obtained (yellow arrow). The full width at half-maximum of this profile (Fig. 1 d) gives a lateral resolution for the system of 120 nm.Open in a separate windowFigure 1(a) Schematic of the TIRF SIM setup. (b) Demonstration of the doubling of spatial resolution of collected frequencies through a Fourier transform (superimposed red circle demonstrating regular spatial frequency limits). (c) SIM reconstructed image of 100-nm bead (scale bar 0.5 μm). (d) (Plotted line) Bead showing full width at half-maximum of 120 nm.We then applied STICS analysis to quantify actin flow in T cell synapses acquired using TIRF SIM (Fig. 2). Fig. 2 a shows a schematic of the STICS analysis. From the raw data, immobile objects are first filtered by subtracting a moving average of the pixel values. Vector maps were obtained from correlation analysis of the time-series as previously published in Hebert et al. (2) and Brown et al. (13). Fig. 2 b shows a reconstructed TIRF SIM image of a mature T cell immunological synapse, representative of a time-point derived from the time series acquired at 1.28 fps (see Movie S1 in the Supporting Material). From this reconstructed image, two representative regions have been selected. In these regions, pseudo-colored actin flow vectors are overlaid onto the fluorescence intensity image. These range in magnitude from 0.01 μm/min (blue) to 5.61 μm/min (red). It can be observed that all flow vectors are directed radially toward the synapse center. A histogram of this flow is shown in Fig. 2 c. The histogram shows a peak retrograde flow velocity of 1.91 ± 1.27 μm/min. These data are representative of n = 7 T-cell synapses imaged by TIRF SIM.Open in a separate windowFigure 2(a) STICS analysis, performed by isolating mobile from immobile structures through a moving average filter (i) and binning a subset of pixels into blocks of superpixels (ii); the STICS software correlates spatial fluorescence fluctuations through time (iii). The code then outputs vector maps showing directionality and flow velocities. (b) TIRF SIM image of actin flow in a T cell 5 min after contact with a stimulatory coverslip. (Zoomed regions) Retrograde actin flow at the synapse periphery. (c) Histograms showing flow speed statistics of vectors from T-cell synapses (n = 7).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号