首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vo NV  Young KC  Lai MM 《Biochemistry》2003,42(35):10462-10471
Crotty et al. recently proposed the primary antiviral action of ribavirin to be that of a potent RNA mutagen [Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379]. Here we investigate the effect of ribavirin triphosphate (RTP) on RNA synthesis catalyzed by a full-length hepatitis C virus (HCV) RNA polymerase in vitro. HCV polymerase can use RTP as a nucleotide substrate in a template-dependent manner, incorporating it opposite a pyrimidine (C or U) template residue, but not a purine (A or G). Kinetic analysis revealed that incorporation of ribavirin monophosphate (RMP) across from C is 3 times more efficient catalytically than that across from U, as determined by the k(cat)/K(m) parameter. The efficiency of RMP incorporation, however, is 50-100 fold lower than that of the natural NMP. RMP incorporation does not lead to termination of RNA chain synthesis, as evidenced by the ability of the polymerase to extend its RNA product many nucleotides beyond the site of RMP incorporation. However, multiple-RMP incorporation at low GTP concentrations induced the formation of stalled elongation complexes, particularly at the template region containing consecutive C residues. Most, but not all, such elongation blocks can be relieved by the re-addition of GTP. When ribavirin is present in the RNA template, pyrimidine (but neither purine nor ribavirin) monophosphate is incorporated opposite ribavirin, but at an exceedingly low catalytic efficiency (200-3000-fold lower) compared to the efficiencies of those templated by A or G. Consequently, the level of RNA synthesis on a ribavirin-containing template is significantly reduced. These findings suggest that ribavirin not only is mutagenic but also interferes with HCV polymerase-mediated RNA synthesis.  相似文献   

2.
The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen   总被引:18,自引:0,他引:18  
The ribonucleoside analog ribavirin (1-beta-D-ribofuranosyl-1,2, 4-triazole-3-carboxamide) shows antiviral activity against a variety of RNA viruses and is used in combination with interferon-alpha to treat hepatitis C virus infection. Here we show in vitro use of ribavirin triphosphate by a model viral RNA polymerase, poliovirus 3Dpol. Ribavirin incorporation is mutagenic, as it templates incorporation of cytidine and uridine with equal efficiency. Ribavirin reduces infectious poliovirus production to as little as 0. 00001% in cell culture. The antiviral activity of ribavirin correlates directly with its mutagenic activity. These data indicate that ribavirin forces the virus into 'error catastrophe'. Thus, mutagenic ribonucleosides may represent an important class of anti-RNA virus agents.  相似文献   

3.
GB virus B (GBV-B) is the closest relative of hepatitis C virus (HCV) and is an attractive surrogate model for HCV antiviral studies. GBV-B induces an acute, resolving hepatitis in tamarins. Utilizing primary cultures of tamarin hepatocytes, we have previously developed a tissue culture system that exhibits high levels of GBV-B replication. In this report, we have extended the utility of this system for testing antiviral compounds. Treatment with human interferon provided only a marginal antiviral effect, while poly(I-C) yielded >3 and 4 log units of reduction of cell-associated and secreted viral RNA, respectively. Interestingly, treatment of GBV-B-infected hepatocytes with ribavirin resulted in an approximately 4-log decrease in viral RNA levels. Guanosine blocked the antiviral effect of ribavirin, suggesting that inhibition of IMP dehydrogenase (IMPDH) and reduction of intracellular GTP levels were essential for the antiviral effect. However, mycophenolic acid, another IMPDH inhibitor, had no antiviral effect. Virions harvested from ribavirin-treated cultures exhibited a dramatically reduced specific infectivity. These data suggest that incorporation of ribavirin triphosphate induces error-prone replication with concomitant reduction in infectivity and that reduction of GTP pools may be required for incorporation of ribavirin triphosphate. In contrast to the in vitro studies, no significant reduction in viremia was observed in vivo following treatment of tamarins with ribavirin during acute infection with GBV-B. These findings are consistent with the observation that ribavirin monotherapy for HCV infection decreases liver disease without a significant reduction in viremia. Our data suggest that nucleoside analogues that induce error-prone replication could be an attractive approach for the treatment of HCV infection if administered at sufficient levels to result in efficient incorporation by the viral polymerase.  相似文献   

4.
Ribavirin is a broad spectrum antiviral nucleoside that displays activity against a variety of RNA and DNA viruses. Ribavirin is currently used in combination with interferon-alpha for the treatment of hepatitis C virus (HCV) infection and was recently shown to be directly incorporated by the HCV RNA polymerase into RNA products. This capacity ultimately leads to increased mutation rates and drastically reduces the viral fitness. As a first step toward elucidating the nature of the specific interaction between ribavirin and the HCV polymerase, we have utilized fluorescence spectroscopy to monitor precisely the binding of ribavirin triphosphate (RTP) to the viral polymerase. This spectroscopic approach allowed us to clearly separate the RTP binding activity from the concomitant catalytic steps. We report here the first detailed study of the binding kinetics and thermodynamic parameters involved in the interaction between RTP and an RNA polymerase. We demonstrate that RTP binds to the same active site as nucleotides. Furthermore, we provide evidence that the HCV polymerase cannot only bind to RTP but also to nonphosphorylated ribavirin, albeit with less affinity. By using various combinations of template-primers, we also demonstrate that base pairing is not involved in the initial binding of RTP to the HCV polymerase. Based on the results of circular dichroism and denaturation studies, we show that the RNA polymerase undergoes subtle conformational changes upon the binding of RTP, although the interaction does not significantly modify the stability of the protein. Finally, although metal ions are required for catalytic activity, they are not required for the initial binding of RTP to the polymerase. Such quantitative analyses are of primary importance for the rational design of new ribavirin analogues of potential therapeutic value and provide crucial insights on the interaction between RTP and the HCV RNA polymerase.  相似文献   

5.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

6.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

7.
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B post-transfusion hepatitis. Its genome, a (+)-stranded RNA molecule of approximately 9.4 kb, encodes a large polyprotein that is processed by viral and cellular proteases into at least nine different viral polypeptides. As with other (+)-strand RNA viruses, the replication of HCV is thought to proceed via the initial synthesis of a complementary (-) RNA strand, which serves, in turn, as a template for the production of progeny (+)-strand RNA molecules. An RNA-dependent RNA polymerase has been postulated to be involved in both of these steps. Using the heterologous expression of viral proteins in insect cells, we present experimental evidence that an RNA-dependent RNA polymerase is encoded by HCV and that this enzymatic activity is the function of the 65 kDa non-structural protein 5B (NS5B). The characterization of the HCV RNA-dependent RNA polymerase product revealed that dimer-sized hairpin-like RNA molecules are generated in vitro, indicating that NS5B-mediated RNA polymerization proceeds by priming on the template via a 'copy-back' mechanism. In addition, the purified HCV NS5B protein was shown to perform RNA- or DNA oligonucleotide primer-dependent RNA synthesis on templates with a blocked 3' end or on homopolymeric templates. These results represent a first important step towards a better understanding of the life cycle of the HCV.  相似文献   

8.
The 9600-base RNA genome of hepatitis C virus (HCV) has an internal ribosome entry site (IRES) in its first 370 bases, including the AUG start triplet at bases 342-344. Structural elements of this and other IRES domains substitute for a 5' terminal cap structure in protein synthesis. Recent work (Nadal, A., Martell, M., Lytle, J. R., Lyons, A. J., Robertson, H. D., Cabot, B., Esteban, J. I., Esteban, R., Guardia, J., and Gomez, J. (2002) J. Biol. Chem. 277, 30606-30613) has demonstrated that the host pre-tRNA processing enzyme, RNase P, can cleave the HCV RNA genome at a site in the IRES near the AUG initiator triplet. Although this step is unlikely to be part of the HCV life cycle, such a reaction could indicate the presence of a tRNA-like structure in this IRES. Because susceptibility to cleavage by mammalian RNase P is a strong indicator of tRNA-like structure, we have conducted the studies reported here to test whether such tRNA mimicry is unique to HCV or is a general property of IRES structure. We have assayed IRES domains of several viral RNA genomes: two pestiviruses related to HCV, classical swine fever virus and bovine viral diarrhea virus; and two unrelated viruses, encephalomyocarditis virus and cricket paralysis virus. We have found similarly placed RNase P cleavage sites in these IRESs. Thus a tRNA-like domain could be a general structural feature of IRESs, the first IRES structure to be identified with a functional correlate. Such tRNA-like features could be recognized by pre-existing ribosomal tRNA-binding sites as part of the IRES initiation cycle.  相似文献   

9.
The RNA-dependent RNA polymerase (NS5B) of the hepatitis C virus (HCV) plays a key role in the life cycle of the virus. In order to find inhibitors of the HCV polymerase, we screened a library of 81 nucleotide (nt)-long synthetic DNA containing 35 random nucleotides by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) approach. Thirty ligands selected for their binding affinity to the NS5B were classified into four groups on the basis of their sequence homologies. Among the selected molecules, two were able to inhibit in vitro the polymerase activity of the HCV NS5B. These aptamers appeared to be specific for HCV polymerase, as no inhibition of poliovirus 3D polymerase activity was observed. The binding and inhibitory potential of one aptamer (27v) was associated with the 35 nt-long variable region. This oligonucleotide displayed an apparent dissociation constant (K(d)) in the nanomolar range. Our results showed that it was able to compete with RNA templates corresponding to the 3'-ends of the (+) and the (-) HCV RNA for binding to the polymerase. The fact that a DNA aptamer could interfere with the binding of natural templates of the enzyme could help in performing structure-function analysis of the NS5B and might constitute a basis for further structure-based drug design of this crucial enzyme of HCV replication.  相似文献   

10.
11.
Interferon (IFN)-alpha monotherapy, as well as the more effective combination therapy of IFN-alpha and ribavirin, are currently used for patients with chronic hepatitis C caused by hepatitis C virus (HCV) infection, although the mechanisms of the antiviral effects of these reagents on HCV remain ambiguous, and side effects such as anemia due to the administration of ribavirin present a problem for patients who are advanced in years. Using a recently developed reporter assay system in which genome-length dicistronic HCV RNA encoding Renilla luciferase gene was found to replicate efficiently, we found that mizoribine, an imidazole nucleoside, inhibited HCV RNA replication. The anti-HCV activity of mizoribine (IC50: approximately 100 microM) was similar to that of ribavirin. Using this genome-length HCV RNA replication monitor system, we were the first to demonstrate that the combination of IFN-alpha and ribavirin exhibited more effective anti-HCV activity than the use of IFN-alpha alone. Moreover, we found that the anti-HCV activity of mizoribine in co-treatment with IFN-alpha was at least equivalent to that of ribavirin. This effect was apparent in the presence of at least 5 microM mizoribine. Since mizoribine is currently used in several clinical applications and has not been associated with severe side effects, mizoribine is considered to be of potential use as a new anti-HCV reagent in combination with IFN-alpha.  相似文献   

12.
High rates of genetic variation ensure the survival of RNA viruses. Although this variation is thought to result from error-prone replication, RNA viruses must also maintain highly conserved genomic segments. A balance between conserved and variable viral elements is especially important in order for viruses to avoid "error catastrophe." Ribavirin has been shown to induce error catastrophe in other RNA viruses. We therefore used a novel hepatitis C virus (HCV) replication system to determine relative mutation frequencies in variable and conserved regions of the HCV genome, and we further evaluated these frequencies in response to ribavirin. We sequenced the 5' untranslated region (5' UTR) and the core, E2 HVR-1, NS5A, and NS5B regions of replicating HCV RNA isolated from cells transfected with a T7 polymerase-driven full-length HCV cDNA plasmid containing a cis-acting hepatitis delta virus ribozyme to control 3' cleavage. We found quasispecies in the E2 HVR-1 and NS5B regions of untreated replicating viral RNAs but not in conserved 5' UTR, core, or NS5A regions, demonstrating that important cis elements regulate mutation rates within specific viral segments. Neither T7-driven replication nor sequencing artifacts produced these nucleotide substitutions in control experiments. Ribavirin broadly increased error generation, especially in otherwise invariant regions, indicating that it acts as an HCV RNA mutagen in vivo. Similar results were obtained in hepatocyte-derived cell lines. These results demonstrate the potential utility of our system for the study of intrinsic factors regulating genetic variation in HCV. Our results further suggest that ribavirin acts clinically by promoting nonviable HCV RNA mutation rates. Finally, the latter result suggests that our replication model may be useful for identifying agents capable of driving replicating virus into error catastrophe.  相似文献   

13.
14.
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.  相似文献   

15.
16.
17.
K R Hill  M Hajjou  J Y Hu    R Raju 《Journal of virology》1997,71(4):2693-2704
Sindbis virus (SIN), a mosquito-transmitted animal RNA virus, carries a 11.7-kb positive-sense RNA genome which is capped and polyadenylated. We recently reported that the SIN RNA-dependent RNA polymerase (RdRp) could initiate negative-strand RNA synthesis from a 0.3-kb 3'-coterminal SIN RNA fragment and undergo template switching in vivo (M. Hajjou, K. R. Hill, S. V. Subramaniam, J. Y. Hu, and R. Raju, J. Virol. 70:5153-5164, 1996). To identify and characterize the viral and nonviral sequences which regulate SIN RNA synthesis and recombination, a series of SIN RNAs carrying altered 3' ends were tested for the ability to produce infectious virus or to support recombination in BHK cells. The major findings of this report are as follows: (i) the 3'-terminal 20-nucleotides (nt) sequence along with the abutting poly(A) tail of the SIN genome fully supports negative-strand synthesis, genome replication, and template switching; (ii) a full-length SIN RNA carrying the 3'-terminal 24 nt but lacking the poly(A) tail is noninfectious; (iii) SIN RNAs which carry 3' 64 nt or more without the poly(A) tail are infectious and regain their poly(A) tail in vivo; (iv) donor templates lacking the poly(A) tail do not support template switching; (v) full-length SIN RNAs lacking the poly(A) tail but carrying 3' nonviral extensions, although debilitated to begin with, evolve into rapidly growing poly(A)-carrying mutants; (vi) poly(A) or poly(U) motifs positioned internally within the acceptor templates, in the absence of other promoter elements within the vicinity, do not induce the jumping polymerase to reinitiate at these sites; and (vii) the junction site selection on donor templates occurs independently of the sequences around the acceptor sites. In addition to furthering our understanding of RNA recombination, these studies give interesting clues as to how the alphavirus polymerase interacts with its 3' promoter elements of genomic RNA and nonreplicative RNAs. This is the first report that an in vitro-synthesized alphavirus RNA lacking a poly(A) tail can initiate infection and produce 3' polyadenylated viral genome in vivo.  相似文献   

18.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

19.
Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses.  相似文献   

20.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. Recently, two benzo-1,2,4-thiadiazine compounds were shown to be potent, highly specific inhibitors of the genotype 1b HCV RdRp containing a carboxyl-terminal 21 residue truncation (delta21 HCV RdRp) (Dhanak, D., Duffy, K., Johnston, V. K., Lin-Goerke, J., Darcy, M., Shaw, A. N. G. B., Silverman, C., Gates, A. T., Earnshaw, D. L., Casper, D. J., Kaura, A., Baker, A., Greenwood, C., Gutshall, L. L., Maley, D., DelVecchio, A., Macarron, R., Hofmann, G. A., Alnoah, Z., Cheng, H.-Y., Chan, G., Khandekar, S., Keenan, R. M., and Sarisky, R. T. (2002) J. Biol. Chem. 277, 38322-38327). Compound 4 (C(21)H(21)N(3)O(4)S) reduces viral replication by virtue of its direct interaction with the viral polymerase rather than by nonspecific titration of nucleic acid template. In this study, we present several lines of evidence to demonstrate that this inhibitor interferes with the initiation step of RNA synthesis rather than acting as an elongation inhibitor. Inhibition of initial phosphodiester bond formation occurred regardless of whether replication was initiated by primer-dependent or de novo mechanisms. Filter binding studies using increasing concentrations of compound 4 did not interfere with the ability of delta21 HCV RdRp to interact with nucleic acid. Furthermore, varying the order of reagent addition in the primer extension assay showed no distinct differences in inhibition profile. Finally, surface plasmon resonance analyses provided evidence that a ternary complex is capable of forming between the RNA template, RdRp, and compound 4. Together, these data suggest that this heterocyclic agent interacts with the apoenzyme, as well as with the RNA-bound form of delta21 HCV RdRp, and therefore does not directly interfere with the RdRp-RNA interaction to mediate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号