首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
GB virus B (GBV-B), a flavivirus closely related to HCV, has previously been shown to infect and replicate to high titers in tamarins (Saguinus sp.). This study describes the use of GBV-B infection and replication in the common marmoset (Callithrix jacchus) for the successful development and validation of a surrogate animal model for hepatitis C virus (HCV). Infection of marmosets with GBV-B produced a viremia that peaked at 10(8) to 10(9) genome copies/ml for a period of 40 to 60 days followed by viral clearance at 60 to 80 days postinfection. Passage of the initial tamarin-derived GBV-B in marmosets produced an infectious stock that gave a more reproducible and consistent infection in the marmoset. Titration of the virus stocks in vivo indicated that they contained 1 infectious unit for every 1,000 genome copies. Cultures of primary marmoset hepatocytes were also successfully infected with GBV-B, with high levels of virus detected in supernatants and cells for up to 14 days postinfection. Treatment of GBV-B-infected hepatocyte cultures with a novel class of HCV protease inhibitor (pyrrolidine 5,5 trans-lactams) reduced viral levels by more than 2 logs. Treatment of GBV-B-infected marmosets with one such inhibitor resulted in a 3-log drop in serum viral titer over 4 days of therapy. These studies provide the first demonstration of the in vivo efficacy of a small-molecule inhibitor for HCV in an animal model and illustrate the utility of GBV-B as a surrogate animal model system for HCV.  相似文献   

3.
GB virus B (GBV-B), the virus most closely related to hepatitis C virus (HCV), infects tamarins and causes acute hepatitis. The 3' untranslated region (UTR) of an infectious GBV-B clone (pGBB) has a proximal short sequence followed by a poly(U) tract and a 3' terminal sequence. Our investigators previously demonstrated that the 3' terminal sequence was critical for in vivo infectivity. Here, we tested the effect of deleting the short sequence and/or the poly(U) tract from pGBB; infectivity of each mutant was tested by intrahepatic transfection of two tamarins with transcribed RNA. A mutant lacking both regions was not viable. However, mutants lacking either the short sequence or the poly(U) tract were viable. All four tamarins had a wild-type-like acute infection and developed acute hepatitis. Whereas we found that five tamarins transfected with the wild-type clone pGBB had acute resolving infection, one tamarin transfected with the poly(U) deletion mutant became persistently infected. This animal had viremia and hepatitis until its death at week 90. The genomes recovered at weeks 2, 7, 15, 20, 60, and 90 lacked the poly(U) stretch. Eight amino acid changes were identified at week 90. One change, in the putative p7 protein, was dominant at week 15. Thus, persistence of GBV-B, like persistence of HCV, was associated with the emergence of virus variants. Four tamarins inoculated with serum collected at weeks 2 and 90 from the tamarin with persistent infection had an acute resolving infection. Nonetheless, the demonstration that GBV-B can persist in tamarins strengthens its relevance as a surrogate model for the study of HCV.  相似文献   

4.
GB virus B (GBV-B) is a virus of the family Flaviviridae that infects small primates (Saguinus sp. [tamarins]) and shows similarities to hepatitis C virus (HCV) in genome organization, protein function, tissue tropism, and pathogenicity. This suggests the possibility of using tamarins infected by GBV-B or GBV-B/HCV chimeric viruses as a surrogate animal model of HCV infection. To achieve the construction of such chimeric viruses, it is essential to produce a complete and infectious GBV-B genomic RNA. We have identified a novel sequence at the 3' end of the GBV-B genome and show that it can be arranged in a secondary structure resembling that of the 3' end of the HCV genome, which is known to be essential for infectivity.  相似文献   

5.
Ribavirin is administered in combination with interferon-alpha for treatment of hepatitis C virus (HCV) infection. Recently, we demonstrated that the antiviral activity of ribavirin can result from the ability of a viral RNA polymerase to utilize ribavirin triphosphate and to incorporate this nucleotide with reduced specificity, thereby mutagenizing the genome and decreasing the yield of infectious virus (Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379). In this study, we performed a quantitative analysis of a novel HCV RNA polymerase derivative that is capable of utilizing stably annealed primer-template substrates and exploited this derivative to evaluate whether lethal mutagenesis of the HCV genome is a possible mechanism for the anti-HCV activity of ribavirin. These studies demonstrate HCV RNA polymerase-catalyzed incorporation of ribavirin opposite cytidine and uridine. In addition, we demonstrate that templates containing ribavirin support CMP and UMP incorporation with equivalent efficiency. Surprisingly, templates containing ribavirin can also cause a significant block to RNA elongation. Together, these data suggest that ribavirin can exert a direct effect on HCV replication, which is mediated by the HCV RNA polymerase. We discuss the implications of this work on the development of nucleoside analogs for treatment of HCV infection.  相似文献   

6.
Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV.  相似文献   

7.
The broad spectrum of antiviral activity of ribavirin (RBV) lies in its ability to inhibit IMP dehydrogenase, which lowers cellular GTP. However, RBV can act as a potent mutagen for some RNA viruses. Previously we have shown a lack of correlation between antiviral activity and GTP repression for Hantaan virus (HTNV) and evidence for RBV's ability to promote error-prone replication. To further explore the mechanism of RBV, GTP levels, specific infectivity, and/or mutation frequency was measured in the presence of RBV, mycophenolic acid (MPA), selenazofurin, or tiazofurin. While all four drugs resulted in a decrease in the GTP levels and infectious virus, only RBV increased the mutation frequency of viral RNA (vRNA). MPA, however, could enhance RBV's mutagenic effect, which suggests distinct mechanisms of action for each. Therefore, a simple drop in GTP levels does not drive the observed error-prone replication. To further explore RBV's mechanism of action, we made a comprehensive analysis of the mutation frequency over several RBV concentrations. Of importance, we observed that the viral population reached a threshold after which mutation frequency did not correlate with a dose-dependent decrease in the level of vRNA, PFU, or [RTP]/[GTP] (where RTP is ribavirin-5'-triphosphate) over these same concentrations of RBV. Modeling of the relationship of mutation frequency and drug concentration showed an asymptotic relationship at this point. After this threshold, approximately 57% of the viral cDNA population was identical to the wild type. These studies revealed a lethal threshold, after which we did not observe a complete loss of the quasispecies structure of the wild-type genome, although we observed extinction of HTNV.  相似文献   

8.
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production.  相似文献   

9.
GB virus B (GBV-B) infection of New World monkeys is considered to be a useful surrogate model for hepatitis C virus (HCV) infection. GBV-B replicates in the liver and induces acute resolving hepatitis but little is known whether the other organs could be permissive for the virus. We investigated the viral tropism of GBV-B in tamarins in the acute stage of viral infection and found that the viral genomic RNA could be detected in a variety of tissues. Notably, a GBV-B-infected tamarin with marked acute viremia scarcely showed a sign of hepatitis, due to preferential infection in lymphoid tissues such as lymph nodes and spleen. These results indicate that GBV-B as well as HCV is a pleiotropic virus in vivo.  相似文献   

10.
11.
Understanding the mechanisms of hepatitis C virus (HCV) pathogenesis and persistence has been hampered by the lack of small, convenient animal models. GB virus B (GBV-B) is phylogenetically the closest related virus to HCV. It causes generally acute and occasionally chronic hepatitis in small primates and is used as a surrogate model for HCV. It is not known, however, whether GBV-B has evolved strategies to circumvent host innate defenses similar to those of HCV, a property that may contribute to HCV persistence in vivo. We show here in cultured tamarin hepatocytes that GBV-B NS3/4A protease, but not a related catalytically inactive mutant, effectively blocks innate intracellular antiviral responses signaled through the RNA helicase, retinoic acid-inducible gene I (RIG-I), an essential sensor molecule that initiates host defenses against many RNA viruses, including HCV. GBV-B NS3/4A protease specifically cleaves mitochondrial antiviral signaling protein (MAVS; also known as IPS-1/Cardif/VISA) and dislodges it from mitochondria, thereby disrupting its function as a RIG-I adaptor and blocking downstream activation of both interferon regulatory factor 3 and nuclear factor kappa B. MAVS cleavage and abrogation of virus-induced interferon responses were also observed in Huh7 cells supporting autonomous replication of subgenomic GBV-B RNAs. Our data indicate that, as in the case of HCV, GBV-B has evolved to utilize its major protease to disrupt RIG-I signaling and impede innate antiviral defenses. These data provide further support for the use of GBV-B infection in small primates as an accurate surrogate model for deciphering virus-host interactions in hepacivirus pathogenesis.  相似文献   

12.
GB virus B (GBV-B) is a hepatotropic virus that is closely related to hepatitis C virus (HCV). GBV-B causes acute hepatitis in infected marmosets and tamarins and is therefore a useful small-animal model for the study of HCV. We investigated virus-specific T-cell responses in marmosets infected with GBV-B. Gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay responses in the peripheral blood of two marmosets were assessed throughout the course of GBV-B infection. These T-cell responses were directed against the GBV-B nonstructural proteins 3 (NS3), 4A (NS4A), and 5B (NS5B), and their appearance was temporally associated with clearance of viremia. These marmosets were then rechallenged with GBV-B at least 3 months after clearance of the primary infection to determine if the animals were protected from reinfection. There was no detectable viremia following reinfection, although a sharp increase in T-cell responses against GBV-B proteins was observed. Epitope mapping of T-cell responses to GBV-B was performed with liver and blood samples from both marmosets after rechallenge with GBV-B. Three shared, immunodominant T-cell epitopes within NS3 were identified in animals with multiple common major histocompatibility complex class I alleles. IFN-gamma ELISPOT responses were also detected in the livers of two marmosets that had resolved a primary GBV-B infection. These responses were high in frequency and were directed against epitopes within GBV-B NS3, NS4A, and NS5B proteins. These results indicate that virus-specific T-cell responses are detectable in the liver and blood of GBV-B-infected marmosets and that the clearance of GBV-B is associated with the appearance of these responses.  相似文献   

13.
Tamarins (Saguinus species) infected by GB virus B (GBV-B) have recently been proposed as an acceptable surrogate model for hepatitis C virus (HCV) infection. The availability of infectious genomic molecular clones of both viruses will permit chimeric constructs to be tested for viability in animals. Studies in cells with parental and chimeric constructs would also be very useful for both basic research and drug discovery. For this purpose, a convenient host cell type supporting replication of in vitro-transcribed GBV-B RNA should be identified. We constructed a GBV-B subgenomic selectable replicon based on the sequence of a genomic molecular clone proved to sustain infection in tamarins. The corresponding in vitro-transcribed RNA was used to transfect the Huh7 human hepatoma cell line, and intracellular replication of transfected RNA was shown to occur, even though in a small percentage of transfected cells, giving rise to antibiotic-resistant clones. Sequence analysis of GBV-B RNA from some of those clones showed no adaptive mutations with respect to the input sequence, whereas the host cells sustained higher GBV-B RNA replication than the original Huh7 cells. The enhancement of replication depending on host cell was shown to be a feature common to the majority of clones selected. The replication of GBV-B subgenomic RNA was susceptible to inhibition by known inhibitors of HCV to a level similar to that of HCV subgenomic RNA.  相似文献   

14.
Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5′-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance.  相似文献   

15.
16.
The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications.  相似文献   

17.
Synthetic small molecules that promote viral mutagenesis represent a promising new class of antiviral therapeutics. Ribavirin is a broad-spectrum antiviral nucleoside whose antiviral mechanism against RNA viruses likely reflects the ability of this compound to introduce mutations into the viral genome. The mutagenicity of ribavirin results from the incorporation of ribavirin triphosphate opposite both cytidine and uridine in viral RNA. In an effort to identify compounds with mutagenicity greater than that of ribavirin, we synthesized 1-beta-D-ribofuranosyl-3-nitropyrrole (3-NPN) and the corresponding triphosphate (3-NPNTP). These compounds constitute RNA analogues of the known DNA nucleoside 1-(2'-deoxy-beta-D-ribofuranosyl)-3-nitropyrrole. The 3-nitropyrrole pseudobase has been shown to maintain the integrity of DNA duplexes when placed opposite any of the four nucleobases without requiring hydrogen bonding. X-ray crystallography revealed that 3-NPN is structurally similar to ribavirin, and both compounds are substrates for adenosine kinase, an enzyme critical for conversion to the corresponding triphosphate in cells. Whereas ribavirin exhibits antiviral activity against poliovirus in cell culture, 3-NPN lacks this activity. Evaluation of 3-NPNTP utilization by poliovirus RNA-dependent RNA polymerase (RdRP) revealed that 3-NPNTP was not accepted universally. Rather, incorporation was only observed opposite A and U in the template and at a rate 100-fold slower than the rate of incorporation of ribavirin triphosphate. This diminished rate of incorporation into viral RNA likely precludes 3-NPN from functioning as an antiviral agent. These results indicate that hydrogen bonding substituents are critical for efficient incorporation of ribonucleotides into RNA by viral RdRPs, thus providing important considerations for the design of improved mutagenic antiviral nucleosides.  相似文献   

18.
Vo NV  Young KC  Lai MM 《Biochemistry》2003,42(35):10462-10471
Crotty et al. recently proposed the primary antiviral action of ribavirin to be that of a potent RNA mutagen [Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379]. Here we investigate the effect of ribavirin triphosphate (RTP) on RNA synthesis catalyzed by a full-length hepatitis C virus (HCV) RNA polymerase in vitro. HCV polymerase can use RTP as a nucleotide substrate in a template-dependent manner, incorporating it opposite a pyrimidine (C or U) template residue, but not a purine (A or G). Kinetic analysis revealed that incorporation of ribavirin monophosphate (RMP) across from C is 3 times more efficient catalytically than that across from U, as determined by the k(cat)/K(m) parameter. The efficiency of RMP incorporation, however, is 50-100 fold lower than that of the natural NMP. RMP incorporation does not lead to termination of RNA chain synthesis, as evidenced by the ability of the polymerase to extend its RNA product many nucleotides beyond the site of RMP incorporation. However, multiple-RMP incorporation at low GTP concentrations induced the formation of stalled elongation complexes, particularly at the template region containing consecutive C residues. Most, but not all, such elongation blocks can be relieved by the re-addition of GTP. When ribavirin is present in the RNA template, pyrimidine (but neither purine nor ribavirin) monophosphate is incorporated opposite ribavirin, but at an exceedingly low catalytic efficiency (200-3000-fold lower) compared to the efficiencies of those templated by A or G. Consequently, the level of RNA synthesis on a ribavirin-containing template is significantly reduced. These findings suggest that ribavirin not only is mutagenic but also interferes with HCV polymerase-mediated RNA synthesis.  相似文献   

19.
20.
Hepatitis C viral infection affects 170 million people worldwide. It causes serious chronic liver diseases. HCV infection has been implicated in iron accumulation in the liver and iron overload has been shown to be a potential cofactor for HCV associated hepatocellular carcinoma progression. The underlying mechanisms are not understood. Human hepcidin, a 25 amino acid peptide mainly produced by hepatocytes, is a key regulator of iron metabolism. Alteration of hepcidin expression levels has been reported in the setting of chronic HCV infection and hepatocellular carcinoma. In this study, we aim to examine the interactions between HCV infection and hepcidin expression in liver cells. We found that hepcidin expression was suppressed in HCV infected cells. The suppressive effect appears to be regulated by histone acetylation but not DNA methylation. Moreover, we found that hepcidin had a direct antiviral activity against HCV replication in cell culture. The antiviral effect is associated with STAT3 activation. In conclusion, hepcidin can induce intracellular antiviral state while HCV has a strategy to suppress hepcidin expression. This may be a novel mechanism by which HCV circumvents hepatic innate antiviral defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号