首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PHD fingers and bromodomains are found in close proximity to each other in many chromatin-associated proteins and can functionally synergize. Recently, it has been demonstrated that the PHD finger of the KAP1 co-repressor functions as an E3 SUMO ligase for the adjacent bromodomain. This PHD-mediated SUMOylation stabilizes the association of the bromodomain with the chromatin modifiers SETDB1 and the nucleosome remodeling and deacetylation (NuRD) complex, thereby promoting establishment of the silent gene expression state.  相似文献   

2.
3.
4.
5.
6.
7.
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins regulates multiple processes in the eukaryotic cell. In numerous cases sumoylation is facilitated by protein inhibitor of activated STAT (PIAS) proteins, characterized by the presence of a SP-RING domain related to the RING finger of many ubiquitin E3 ligases. The importance of SP-RING relies on its capacity to bind the E2 enzyme of the pathway. Additional domains may participate in SUMO ligase function and target selection. We have studied the Arabidopsis SUMO ligase AtSIZ1, belonging to the PIAS family, and describe self-sumoylation and AtSIZ1-mediated sumoylation of the E2 enzyme AtSCE1 and GTE3, a bromodomain protein interacting with AtSIZ1. Modification of GTE3 modulates its capacity to bind acetyl-histone H3 in vitro. Interestingly, AtSIZ1, as other plant PIAS proteins, also includes a PHD domain. We found that the PHD domain binds AtSCE1 and contributes to the SUMO ligase function, being partially and absolutely required for AtSCE1 and GTE3 sumoylation, respectively. Based on the capacity of AtSCE1 and GTE3 to associate with both the PHD and SP-RING domains, we propose a model of interactions to explain AtSIZ1-mediated sumoylation of GTE3 and ligase function of the PHD domain.  相似文献   

8.
9.
10.
11.
12.
13.
The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were lethal in combination with gcn5Delta, whereas combinations with esa1 grew well. Replacements involving Lys14 of histone H3 (the main target of Gcn5), but not other H3 or H4 lysine residues, also conferred severe growth defects to rsc4 mutant strains. Importantly, wild-type Rsc4 bound an H3 tail peptide acetylated at Lys14, whereas a bromodomain mutant derivative did not. Loss of particular histone deacetylases suppressed rsc4 bromodomain mutations, suggesting that Rsc4 promotes gene activation. Furthermore, rsc4 mutants displayed defects in the activation of genes involved in nicotinic acid biosynthesis, cell wall integrity, and other pathways. Taken together, Rsc4 bears essential tandem bromodomains that rely on H3 Lys14 acetylation to assist RSC complex for gene activation.  相似文献   

14.
15.
16.
17.
18.
The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号