首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Type III IP3 receptor (IP3R3) is one of the common critical calcium-signaling molecules for sweet, umami, and bitter signal transduction in taste cells, and the total IP3R3-expressing cell population represents all cells mediating these taste modalities in the taste buds. Although gustducin, a taste cell-specific G-protein, is also involved in sweet, umami, and bitter signal transduction, the expression of gustducin is restricted to different subsets of IP3R3-expressing cells by location in the tongue. Based on the expression patterns of gustducin and taste receptors in the tongue, the function of gustducin has been implicated primarily in bitter taste in the circumvallate (CV) papillae and in sweet taste in the fungiform (FF) papillae. However, in the soft palate (SP), the expression pattern of gustducin remains unclear and little is known about its function. In the present paper, the expression patterns of gustducin and IP3R3 in taste buds of the SP and tongue papillae in the rat were examined by double-color whole-mount immunohistochemistry. Gustducin was expressed in almost all (96.7%) IP3R3-expressing cells in taste buds of the SP, whereas gustducin-positive cells were 42.4% and 60.1% of IP3R3-expressing cells in FF and CV, respectively. Our data suggest that gustducin is involved in signal transduction of all the tastes of sweet, umami, and bitter in the SP, in contrast to its limited function in the tongue.  相似文献   

2.
Gurmarin (Gur) is a peptide that selectively suppresses sweet taste responses in rodents. The inhibitory effect of Gur differs among tongue regions and mouse strains. Recent studies demonstrated that co-expression levels of genes controlling sweet receptors (T1r2/T1r3 heterodimer) versus Gα-protein, gustducin, are much lower in Gur-insensitive posterior circumvallate papillae than in Gur-sensitive anterior fungiform papillae. Here, we investigated the potential link of Gur-sensitivity with the co-expression for T1r2/T1r3 receptors and gustducin by comparing those of taste tissues of Gur-sensitive (B6, dpa congenic strains) and Gur-weakly-sensitive (BALB) strains. The results indicated that co-expression ratios among T1r2, T1r3, and gustducin in the fungiform papillae were significantly lower in Gur-weakly-sensitive BALB mice than in Gur-sensitive B6 and dpa congenic mice. This linkage between Gur-sensitivity and co-expression for T1r2/T1r3 receptors versus gustducin suggests that gustducin may be a key molecule involved in the pathway for Gur-sensitive sweet responses.  相似文献   

3.
4.
5.
6.
We examined co-localization of vanilloid receptor (VR1) with sweet receptors T1R2, T1R3, or bitter receptor T2R6 in taste receptor cells of rat circumvallate papillae. Tissue sections of rat circumvallate papillae were doubly reacted with anti-VR1 antibodies and anti-T1R2, anti-T1R3 or anti-T2R6 antibodies, using double-immunofluorescence histochemistry technique. Localizations of VR1, T1Rs and T2R6 in the vallate taste cells containing α-gustducin were also examined. VR1 immunoreactivities (-ir) were observed in subsets of taste cells in the circumvallate papillae, and 96–99% of the vallate taste cells exhibiting T1R2-, T1R3- or T2R6-ir co-exhibited VR1-ir. Approximately half of T2R6-ir cells (~49%), and 50–58% of T1Rs-ir cells, co-exhibited α-gustducin-ir in the vallate taste buds. About 58% of VR1-ir cells in the vallate exhibited α-gustducin-ir as well. Results support the idea that capsaicin may interact with the transduction pathways of sweet and bitter taste stimuli, possibly in mediation of its receptor VR1 localized in taste receptor cells. Additionally, the partial co-localization of α-gustducin with VR1 suggests that a tentative modulatory function of capsaicin in sweet and bitter transductions in the rat circumvallate comprises of both α-gustducin-mediated and non-mediated transduction pathways.  相似文献   

7.
8.
9.
10.
11.
The palatal region of the oral cavity in rodents houses 100-300 taste buds and is particularly sensitive to sweet and umami compounds; yet, few studies have examined the expression patterns of transduction-related molecules in this taste field. We investigated the interrelationships between members of the T1R family and between each T1R and gustducin in palatal taste buds. Similar to lingual taste buds, T1R1 and T1R2 are generally expressed in separate palatal taste cells. In contrast to lingual taste buds, however, T1R2 and T1R3-positive palatal taste cells almost always coexpress gustducin, suggesting that sweet taste transduction in the palate is almost entirely dependent on gustducin. T1R1-positive palate taste cells coexpress gustducin about half the time, suggesting that other G proteins may contribute to the transduction of umami stimuli in this taste field.  相似文献   

12.
13.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

14.
Calcium is an essential nutrient that induces a distinctive taste quality, but the sensing mechanism of calcium in the tongue is poorly understood. A recent study linked calcium to T1R3 receptor. Here, we propose another system for calcium taste involving the extracellular calcium-sensing receptor (CaSR). This G protein-coupled receptor that responds to calcium and magnesium cations is involved in calcium homeostasis regulating parathyroid and kidney functions. In this study, CaSR was found in isolated taste buds from rats and mice. It was expressed in a subset of cells in circumvallate and foliate papillae, with fewer cells in the fungiform papillae. This is the first evidence in mammals that locates CaSR in gustatory tissue and provides the basis for better understanding not only calcium taste but also the taste of multiple CaSR agonists.  相似文献   

15.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

16.
17.
In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.  相似文献   

18.
Two experiments were conducted to investigate the psychophysicalresponse characteristics of single circumvallate papillae. InExperiment 1, 12 circumvallate papillae in four subjects werechemically stimulated to assess identification of taste qualities.Single circumvallate papillae were found to mediate multipletaste qualities, and the taste profiles obtained from differentpapillae were similar within the same subject. Moreover, sucrose,quinine monohydrochloride and citric acid elicited unitary andcharacteristic quality responding in these papillae from allsubjects, whereas NaCl elicited predominantly sour and/or bitterresponses from three of the four subjects. Experiment 2 directly compared responses obtained from singlecircumvallate papillae with those obtained from fungiform regionsof the tongue. Data for 10 subjects showed significantly greatersour responses to citric acid and NaCl in circumvallate papillaeand significantly greater salty responses to these compoundson the anterior tongue. In addition, the taste profiles forcitric acid and NaCl were distinct for circumvallate papillae,while those from the anterior tongue were similar. These datasuggest that the bitterness and sweetness of quinine and sugar,respectively, can be identified on the basis of sensory informationarising from either circumvallate or fungiform regions, butthat differentiation of the tastes of salts and acids may dependon a comparison of the input from both regions and/or additionalinformation arising from foliate regions.  相似文献   

19.
20.
The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号