首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Sesamin is a specific inhibitor of Δ5 desaturation, the conversion from dihomo-γ-linolenic acid (20: 3, n-6) to arachidonic acid (AA, 20: 4, n-6). Previously, we reported that sesamin inhibited Δ5 desaturation of n-6 fatty acids in rat hepatocytes but not that of n-3 fatty acids, from 20: 4 (n-3) to eicosapentaenoic acid (EPA, 20: 5, n-3). In this study, we investigated the interaction of sesamin and EPA on Δ5 desaturation of both series and the n-6/n-3 fatty acids ratio by measuring actural fatty acid contents in vivo. Rats were fed three types of dietary oils; 1) linoleic acid (LA, 18: 2, n-6): linolenic acid (LLA, 18: 3, n-3) = 3: 1, n-6/n-3 ratio of 3: 1 (LA group), 2) LA: LLA =1: 3, n-6/n-3 ratio of 1: 3 (LLA group), 3) LA: LLA: EPA =1: 0.5: 3, n-6/n-3 ratio of 1: 3.5 (EPA group) with or without sesamin (0.5% w/w) for 4 weeks. In all groups, sesamin administration increased the content of dihomo-γ-linolenic acid (20: 3, n-6) in the liver and decreased the Δ5 desaturation index of n-6 fatty acid, the ratio of 20: 4/20: 3 (n-6). On the contrary, the Δ5 desaturation index of n-3 fatty acid, the ratio of 20: 5 + 22: 5 + 22: 6/20: 4 (n-3), was increased by the administration of sesamin. These results suggest that sesamin inhibits the A5 desaturation of n-6 fatty acid, but not that of n-3 fatty acid in rat livers. Sesamin administration decreased incorporation of EPA (n-3) and simultaneously increased the AA (n-6) content in the liver. The n-6/n-3 ratio in the liver was increased by administering sesamin under n-3 rich conditions, i.e., the LLA and EPA groups.  相似文献   

3.
We supplemented diets with α-tocopheryl acetate (100 mg/kg) and replaced beef tallow (BT) in feeds with increasing doses of n-6- or n-3-rich vegetable fat sources (linseed and sunflower oil), and studied the effects on the fatty acid (FA) composition, the α-tocopherol (αT) content and the oxidative stability of rabbit plasma and liver. These effects were compared with those observed in a previous study in rabbit meat. As in meat, the content of saturated, monounsaturated and trans FA in plasma and liver mainly reflected feed FA profile, except stearic acid in liver, which increased as feeds contained higher doses of vegetable fat, which could be related to an inhibition of the activity of the stearoyl-CoA-desaturase. As linseed oil increased in feeds, the n-6/n-3 FA ratio was decreased in plasma and liver as a result of the incorporation of FA from diets and also, due to the different performance and selectivity of desaturase enzymes. However, an increase in the dose of vegetable fat in feeds led to a significant reduction in the αT content of plasma and liver, which was greater when the fat source was linseed oil. Increasing the dose of vegetable fat in feeds also led to an increase in the susceptibility to oxidation (lipid hydroperoxide (LHP) value) of rabbit plasma, liver and meat and on the thiobarbituric acid (TBA) values of meat. Although the dietary supplementation with α-tocopheryl acetate increased the αT content in plasma and liver, it did not modify significantly their TBA or LHP values. In meat however, both TBA and LHP values were reduced by the dietary supplementation with α-tocopheryl acetate. The plasma αT content reflected the αT content in tissues, and correlated negatively with tissue oxidability. From the studied diets, those containing 1.5% linseed oil plus 1.5% BT and 100 mg of α-tocopheryl acetate/kg most improved the FA composition and the oxidative stability of rabbit tissues.  相似文献   

4.
Summary The desaturation and chain elongation of [1-14C] -linolenic acid were studied in HTC cells preincubated for 24 h in the presence of different unlabeled fatty acids of (n-3) and (n-6) series. After 24 h in the presence of [1-14C] -18:3, cells transformed this acid into labeled 20:5 and 22:5(n-3) through the desaturation-elongation pathway and into 20:3 and 22:3(n-3) by the elongation reactions. The preincubation of HTC cells with (n-3) fatty acids (-18:3, 20:5 and 22:6) produced an increase in the amount of [1-14C] -18:3 that remained in the cells without being metabolized and consequently, a decrease in the last product formed, the 22:5(n-3) was observed. Simultaneously, the desaturation-elongation products decreased significantly and those of the elongation pathway were not modified, except when the cells were pre-incubated with the last fatty acid of this family (22:6) which increased this metabolic route. Fatty acids of (n-6) series (-18:3, 20:3, 20:4 and 22:4) decreased the desaturation-elongation pathway and increased the elongation route from [1-14C] -18:3. From these results, it can be concluded that fatty acids of (n-3) family and intermediates of (n-6) series would impair the [1-14C] -18:3 metabolism at the 6 desaturation step. The fatty acid composition of the cells was also modified by the preincubation with (n-3) and (n-6) acids showing a decrease on 9 desaturation activity.  相似文献   

5.
多不饱和脂肪酸(Polyunsaturated fatty acids,PUFA),尤其是n-6和n-3 PUFAs,不仅是人体必需营养素,在调节和预防人类疾病方面同时发挥着重要作用。n-6和n-3 PUFAs在哺乳动物细胞内不能相互转换,且是动植物细胞膜的重要组成成分,具有不同的生理功能。细胞膜多不饱和脂肪酸组成比例很大程度上由膳食决定,因此平衡膳食中n-6/n-3 PUFAs具有重要意义。本文总结了n-6和n-3 PUFAs的代谢途径和作用机制,结合临床试验,阐述了平衡n-6/n-3 PUFA的重要性。  相似文献   

6.
BackgroundPolyunsaturated n-3 and n-6 polyunsaturated fatty acids (PUFA) are precursors of biologically active metabolites that affect blood pressure (BP) regulation. This study investigated the association of n-3 and n-6 PUFA and BP in children and adolescents.MethodsIn a subsample of 1267 children aged 2–9 years at baseline of the European IDEFICS (Identification and prevention of dietary- and lifestyle-induced health effects in children and infants) cohort whole blood fatty acids were measured by a validated gas chromatographic method. Systolic and diastolic BP was measured at baseline and after two and six years. Mixed-effects models were used to assess the associations between fatty acids at baseline and BP z-scores over time adjusting for relevant covariables. Models were further estimated stratified by sex and weight status.ResultsThe baseline level of arachidonic acid was positively associated with subsequent systolic BP (β = 0.08, P = 0.002) and diastolic BP (β = 0.07, P<0.001). In thin/normal weight children, baseline alpha-linolenic (β = -1.13, P = 0.003) and eicosapentaenoic acid (β = -0.85, P = 0.003) levels were inversely related to baseline and also to subsequent systolic BP and alpha-linolenic acid to subsequent diastolic BP. In overweight/obese children, baseline eicosapentaenoic acid level was positively associated with baseline diastolic BP (β = 0.54, P = 0.005).ConclusionsLow blood arachidonic acid levels in the whole sample and high n-3 PUFA levels in thin/normal weight children are associated with lower and therefore healthier BP. The beneficial effects of high n-3 PUFA on BP were not observed in overweight/obese children, suggesting that they may have been overlaid by the unfavorable effects of excess weight.  相似文献   

7.
Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.  相似文献   

8.
The mammalian Δ6-desaturase coded by fatty acid desaturase 2 (FADS2; HSA11q12-q13.1) catalyzes the first and rate-limiting step for the biosynthesis of long-chain polyunsaturated fatty acids. FADS2 is known to act on at least five substrates, and we hypothesized that the FADS2 gene product would have Δ8-desaturase activity. Saccharomyces cerevisiae transformed with a FADS2 construct from baboon neonate liver cDNA gained the function to desaturate 11,14-eicosadienoic acid (20:2n-6) and 11,14,17-eicosatrienoic acid (20:3n-3) to yield 20:3n-6 and 20:4n-3, respectively. Competition experiments indicate that Δ8-desaturation favors activity toward 20:3n-3 over 20:2n-6 by 3-fold. Similar experiments show that Δ6-desaturase activity is favored over Δ8-desaturase activity by 7-fold and 23-fold for n-6 (18:2n-6 vs 20:2n-6) and n-3 (18:3n-3 vs 20:3n-3), respectively. In mammals, 20:3n-6 is the immediate precursor of prostaglandin E1 and thromboxane B1. 20:3n-6 and 20:4n-3 are also immediate precursors of long-chain polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid, respectively. These findings provide unequivocal molecular evidence for a novel alternative biosynthetic route to long-chain polyunsaturated fatty acids in mammals from substrates previously considered to be dead-end products.  相似文献   

9.
目的:探讨小鼠膳食中高n-6/n-3多不饱和脂肪酸比值对肠道菌群的影响。方法:随机选取健康的30只C57/B6小鼠分为对照组(基础饲料)、花生四烯酸组(基础饲料+10%花生四烯酸)、鱼油组(基础饲料+10%鱼油)。喂食16周,16周后提取小鼠肠道菌群宏基因组DNA,采用Roche 454测序技术对肠道菌群16Sr RNA基因V3-V5区域进行测序,对菌群的组成结构以及含量的变化进行分析。结果:花生四烯酸组小鼠体内厚壁菌门的含量达到(55.3±5.26)%,与对照组小鼠体内厚壁菌门的含量(30.23±8.75)%相比显著性升高(P0.05)。并且花生四烯酸组小鼠体内变形菌门的含量(3±0.762)%与对照组(1.5±0.265)%相比也显著性上升(P0.05)。结论:膳食中高n-6/n-3多不饱和脂肪酸比值会造成小鼠体内肠道菌群组成结构的失衡,导致厚壁菌门以及变形菌门的含量上升。  相似文献   

10.
11.
This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P < 0.05), with muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P < 0.01). Compared with canola, pure linseed and soya bean diets reduced 14:1c-9 and 16:1c-9 (P < 0.05) but increased 18:1t-11 and c-9,t-11 conjugated linoleic acid (CLA) content (P < 0.01). Oilseed processing had a minor influence but extruded oilseeds increase 18:1t-11 and c-9,t-11 CLA compared with roasted (P < 0.05). Polar lipid 18:3n-3 and n-3 long-chain polyunsaturated fatty acid (LC, ⩾20 carbons PUFA) derivative content increased in relation to dietary linseed supplementation in the diaphragm (P < 0.01), whereas only 18:3n-3 was increased in the cheek (P < 0.01). Protein expression did not differ between diets; however, in each muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P < 0.05). The relationship between Δ6d protein expression and the LC n-6/n-3 ratio was positive in the cheek (P < 0.001) and negative in the diaphragm (P < 0.05). In conclusion, diet n-6/n-3 ratio affected muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.  相似文献   

12.
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉△6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉△6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸.同样,在改变少根根霉△6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母中,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高.  相似文献   

13.
介绍酵母单杂交、双杂交、三杂交等一系列酵母正向n 杂交系统的原理、研究进展以及应用 ,同时对在此基础上发展出的酵母反向n 杂交系统的原理、研究进展、应用前景等也进行了综述。  相似文献   

14.
介绍酵母单杂交、双杂交、三杂交等一系列酵母正向n-杂交系统的原理、研究进展以及应用,同时对在此基础上发展出的酵母反向n-杂交系统的原理、研究进展、应用前景等也进行了综述。  相似文献   

15.
Δ^6-脂肪酸脱氢酶对n-6和n-3途径中脂肪酸底物的偏好   总被引:4,自引:0,他引:4  
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉Δ^6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉Δ^6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸。同样,在改变少根根霉Δ^6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高。  相似文献   

16.
添加α 亚麻酸作为底物 ,经半乳糖诱导 ,在含有少根根霉Δ6 脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成 ;同时添加亚油酸和α 亚麻酸时 ,检测到γ 亚麻酸和十八碳四烯酸生成 ,而且十八碳四烯酸的含量是γ 亚麻酸含量的 3 81倍 ,表明在酿酒酵母中少根根霉Δ6 脂肪酸脱氢酶不仅能催化α 亚麻酸生成十八碳四烯酸 ,而且偏好n 3途径中的底物α 亚麻酸。同样 ,在改变少根根霉Δ6 脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母中 ,也得到类似的结果 ,而且各种目的脂肪酸的含量均有明显提高  相似文献   

17.
目的探讨n-3、n-6多不饱和脂肪酸(PUFA)高脂饮食对SD大鼠肝脏Srebp2及Hmgcr表达的影响。方法 SD大鼠随机分为3组,分别为对照组(NC)、n-3 PUFA组(TUF)及n-6 PUFA组(SUF),8周后测量血清总胆固醇(TCH)水平,实时定量PCR检测Srebp2及Hmgcr基因表达,Western blotting检测SREBP2及HMGCR蛋白表达。结果 TUF组、SUF组血清TCH含量均显著降低(P<0.001),TUF组最低。TUF组、SUF组Srebp2及Hmgcr基因表达水平均显著增高(P=0.007,P=0.012),SUF组Srebp2最高,TUF组Hmgcr最高。TUF组HMGCR蛋白表达显著高于NC组及SUF组,SUF组与NC组差异无显著性;三组SREBP2蛋白表达。结论 n-3、n-6PUFA降低血清胆固醇不是通过抑制Srebp2及Hmgcr表达实现的。  相似文献   

18.
糖脂代谢的稳态调控是维持机体基本生命活动的基础,糖脂代谢的紊乱与糖尿病、肥胖、脂肪肝、心血管疾病及细胞异常增殖的发生和发展密切相关。富含生物活性n-3多不饱和脂肪酸的鱼油具有调控糖脂代谢紊乱的功能,然而其作用是复杂多方面的,目前对其靶点和分子作用机制的理解尚不全面。本文结合近年来国内外的最新研究进展,综述了n-3多不饱和脂肪酸对生物体糖代谢和脂代谢的影响。  相似文献   

19.
日粮中的n-3PUFA具有多种作用,除了调节质膜组成和影响细胞信号之外,同时还涉及多 种与脂代谢有关酶与蛋白的基因表达,如:PPARα、SREBPs、LXR等,通过它们来影响靶基因(如: ACO-A、FAS等)的表达,从而起到调控脂肪沉积的作用。  相似文献   

20.
炎症反应是机体正常组织对感染和损伤的应答,然而过度的炎症反应往往会引起急性和慢性疾病的发生.最近研究发现,由n-3多不饱和脂肪酸二十碳五烯酸和二十二碳六烯酸代谢产生的resolvins和protectins两类化合物,具有很强的抗炎和炎症修复活性.综述了resolvins和protectin D1的来源、抗炎作用和抗炎机制,为进一步开展n-3多不饱和脂肪酸及其代谢产物的抗炎作用研究、为炎症的防治提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号