首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Wrapping it up: the cell biology of myelination   总被引:5,自引:0,他引:5  
During nervous system development, oligodendroglia in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) synthesise large amounts of specific proteins and lipids to generate myelin, a specialised membrane that spirally ensheathes axons and facilitates fast conduction of the action potential. Myelination is initiated after glial processes have attached to the axon and polarisation of the plasma membrane has been triggered. Myelin assembly is a multi-step process that occurs in spatially distinct regions of the cell. We propose that assembly of myelin proteins and lipids starts during their transport through the biosynthetic pathway and continues at the plasma membrane aided by myelin-basic protein (MBP). These sequential processes create the special lipid and protein composition necessary for myelin to perform its insulating function during nerve conduction.  相似文献   

2.
Lack of neurite growth in optic nerve explants in vitro has been suggested to be due to nonpermissive substrate properties of higher vertebrate central nervous system (CNS) white matter. We have searched for surface components in CNS white matter, which would prevent neurite growth. CNS, but not peripheral nervous system (PNS) myelin fractions from rat and chick were highly nonpermissive substrates in vitro. We have used an in vitro spreading assay with 3T3 cells to quantify substrate qualities of membrane fractions and of isolated membrane proteins reconstituted in artificial lipid vesicles. CNS myelin nonpermissiveness was abolished by treatment with proteases and was not associated with myelin lipid. Nonpermissive proteins were found to be membrane bound and yielded highly nonpermissive substrates upon reconstitution into liposomes. Size fractionation of myelin protein by SDS-PAGE revealed two highly nonpermissive minor protein fractions of Mr 35 and 250-kD. Removal of 35- and of 250-kD protein fractions yielded a CNS myelin protein fraction with permissive substrate properties. Supplementation of permissive membrane protein fractions (PNS, liver) with low amounts of 35- or of 250-kD CNS myelin protein was sufficient to generate highly nonpermissive substrates. Inhibitory 35- and 250-kD proteins were found to be enriched in CNS white matter and were found in optic nerve cell cultures which contained highly nonpermissive, differentiated oligodendrocytes. The data presented demonstrate the existence of membrane proteins with potent nonpermissive substrate properties. Distribution and properties suggest that these proteins might play a crucial inhibitory role during development and regeneration in CNS white matter.  相似文献   

3.
Hormonal steroids participate in the control of a large number of functions of the central nervous system (CNS); recent data show that they may also intervene at the level of the peripheral nervous system (PNS). Both the CNS and the PNS metabolize endogenous as well as exogenous steroids; one of the major enzymatic system is represented by the 5alpha-reductase-3alpha-hydroxysteroid complex. This is a versatile system, since every steroid possessing the delta 4-3keto configuration (e.g., testosterone, progesterone, deoxycorticosterone) may be a substrate. High levels of 5alpha-reductase are found in the white matter of the CNS and in purified myelin. The observation that, in addition to neurons, glia may be a target for steroid action is an important recent finding. The effects of progesterone, testosterone, corticoids, and their respective 5alpha and 3alpha-5alpha derivatives on the expression of glial genes are presented and discussed. It has also been found that progesterone and/or its 5alpha-reduced metabolites increase the mRNA for the two major proteins of peripheral myelin, the glycoprotein Po and the peripheral myelin protein 22, in the sciatic nerve of normal and aged animals and in Schwann cells. The hypothesis has been put forward that glycoprotein Po might be under the control of progestagens acting mainly via the progesterone receptor, and that peripheral myelin protein 22 might be controlled via an interaction of steroids with the gamma-aminobutyric acid (GABA)ergic system. It is known that tetrahydroprogesterone, the 3alpha-5alpha-reduced metabolite of progesterone, interacts with the GABA(A) receptor. Our recent data show that several subunits of this receptor are present in sciatic nerve as well as in Schwann cells that reside in this nerve. These data open multiple possibilities for new therapeutic approaches to demyelinating diseases.  相似文献   

4.
Peripheral nervous system (PNS) myelin from the rainbow trout (Salmo gairdneri) banded at a density of 0.38 M sucrose. The main myelin proteins consisted of (1) two basic proteins, BPa and BPb (11,500 and 13,000 MW, similar to those of trout central nervous system (CNS) myelin proteins BP1 and BP2), and (2) two glycosylated components, IPb (24,400 MW) and IPc (26,200 MW). IPc comigrated with trout CNS myelin protein IP2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas trout CNS myelin protein IP1 had a lower molecular weight (23,000). Following two-dimensional separation, however, both IPb and IPc from PNS showed two components; the more acidic component of IPc comigrated with IP2 from CNS. PNS tissue autolysis led to the formation of IPa (20,000 MW), consisting of two components in isoelectric focusing of which again the more acidic one comigrated with the CNS autolysis product IP0. Limited enzymatic digestion of isolated IP proteins from PNS and CNS led to closely similar degradation patterns, being most pronounced in the case of IP2 and IPc. Immunoblotting revealed that all IP components from trout PNS and CNS myelins reacted with antibodies to trout IP1 (CNS) and bovine P0 protein (PNS) whereas antibodies to rat PLP (CNS) were entirely unreactive. All BP components from trout PNS and CNS myelins bound to antibodies against human myelin basic protein. On the basis of these studies trout PNS and CNS myelins contain at least one common IP glycoprotein, whereas other members of the IP myelin protein family appear closely related. In the CNS myelin of trout the IP components appear to replace PLP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

6.
The proteolipid plasmolipin is member of the expanding group of tetraspan (4TM) myelin proteins. Initially, plasmolipin was isolated from kidney plasma membranes, but subsequent northern blot analysis revealed highest expression in the nervous system. To gain more insight into the functional roles of plasmolipin, we have generated a plasmolipin-specific polyclonal antibody. Immunohistochemical staining confirms our previous observation of glial plasmolipin expression and proves plasmolipin localization in the compact myelin of rat peripheral nerve and myelinated tracts of the CNS. Western blot analysis indicates a strong temporal correlation of plasmolipin expression and (re-) myelination in the PNS and CNS. However, following axotomy plasmolipin expression is also recovered in non-regenerating distal nerve stumps. In addition, we detected plasmolipin expression in distinct neuronal subpopulations of the CNS. The observed asymmetric distribution of plasmolipin in compact myelin, as well as in epithelial cells of kidney and stomach, indicates a polarized cellular localization. Therefore, we purified myelin from the CNS and PNS and demonstrated an enrichement of phosphorylated plasmolipin protein in detergent-insoluble lipid raft fractions, suggesting selective targeting of plasmolipin to the myelin membranes. The present data indicate that the proteolipid plasmolipin is a structural component of apical membranes of polarized cells and provides the basis for further functional analysis.  相似文献   

7.
Myelin is the multi-layered glial sheath around axons in the vertebrate nervous system. Myelinating glia develop and function in intimate association with neurons and neuron-glial interactions control much of the life history of these cells. However, many of the factors that regulate key aspects of myelin development and maintenance remain unknown. To discover new molecules that are important for glial development and myelination, we undertook a screen of zebrafish mutants with previously characterized neural defects. We screened for myelin basic protein (mbp) mRNA by in situ hybridization and identified four mutants (neckless, motionless, iguana and doc) that lacked mbp expression in parts of the peripheral and central nervous systems (PNS or CNS), despite the presence of axons. In all four mutants electron microscopy revealed that myelin-forming glia were present and had formed loose wraps around axons but did not form compact myelin. We found that addition of exogenous retinoic acid (RA) rescued mbp expression in neckless mutant embryos, which lack endogenous RA synthesis. Timed application of the RA synthesis inhibitor DEAB to wild type embryos showed that RA signalling is required at least 48 h before the onset of myelin protein synthesis in both CNS and PNS.  相似文献   

8.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

9.
Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, W1, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and W1 fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole LIS-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

10.
In our accompanying paper (Inouye and Kirschner, 1988) we calculated the surface charge density at the extracellular surfaces in peripheral and central nervous system (PNS; CNS) myelins from observations on the dependency of the width of the extracellular space on pH and ionic strength. Here, we have determined the surface charge density of the membrane surfaces in myelin from its chemical composition and the localization of some of its molecular components. We then analyzed the attractive and repulsive forces between the apposed surfaces and calculated equilibrium periods for comparison with the measured values. The biochemical model accounts for the observed isoelectric range of the myelin period and, with the surface charge reduced (possibly by divalent cation binding or a space charge approximation), the model also accounts for the dependency of period on pH above the isoelectric range. At the extracellular (and cytoplasmic) surfaces the contribution of lipid (with pI approximately 2) to the net surface charge is about the same in both PNS and CNS myelin, whereas the contribution of protein depends on which ones are exposed at the two surfaces. The protein conformation and localization modulate the surface charge of the lipid, resulting in positively-charged cytoplasmic surfaces (pI approximately 9) and negatively-charged extracellular surfaces (pI approximately 2-4). The net negative charge at the extracellular surface is due in CNS myelin to lipid, and in PNS myelin to both lipid and (PO) glycoprotein. The net positive charge at the cytoplasmic surface is due in CNS myelin mostly to basic protein, and in PNS myelin to PO glycoprotein and basic protein. The invariance of the cytoplasmic packing may be due to specific short-range interactions. Our models demonstrate how the particular myelin proteins and their localization and conformation can account for the differences in inter-membrane interactions in CNS and PNS myelins.  相似文献   

11.
Immunocytochemical localization studies of myelin basic protein   总被引:3,自引:3,他引:0       下载免费PDF全文
The location of myelin encephalitogenic or basic protein (BP) in peripheral nervous system (PNS) and central nervous system (CNS) was investigated by immunofluorescence and horseradish peroxidase (HRP) immunocytochemistry. BP or cross-reacting material could be clearly localized to myelin by immunofluorescence and light microscope HRP immunocytochemistry. Fine structural studies proved to be much more difficult, especially in the CNS, due to problems in tissue fixation and penetration of reagents. Sequential fixation in aldehyde followed by ethanol or methanol provided the best conditions for ultrastructural indirect immunocytochemical studies. In PNS tissue, anti-BP was localized exclusively to the intraperiod line of myelin. Because of limitations in technique, the localization of BP in CNS myelin could not be unequivocally determined. In both PNS and CNS tissue, no anti-BP binding to nonmyelin cellular or membranous elements was detected.  相似文献   

12.
Paralytic tremor (Plp-pt) is a missense mutation of the myelin proteolipid gene (Plp) in rabbits. The myelin yield in the Plp-pt brain is reduced and the protein and lipid composition of central nervous system (CNS) myelin is abnormal. We studied the intracellular transport of the normal and Plp-pt mutant PLP and DM-20 in transiently transfected Cos-7 cells. While the mutant PLP accumulates in the rough endoplasmic reticulum and does not reach the plasma membrane, the spliced isoform of PLP, mutant DM-20, is normally transported to the cell surface and integrated into the membrane. Analysis of rabbit sciatic nerves revealed that concentration of peripheral nervous system (PNS) myelin proteins is normal in Plp-pt myelin. In the PNS like in the CNS, the level of Plp gene products is subnormal. But this does not affect myelination, in the PNS where PLP, present in low concentration, is not a structural component of compact myelin. The normal level of Plp gene expression in Schwann cells is low and these results suggest that, in the Plp-pt PNS, Schwann cell function is not affected by the deficiency in PLP and/or the impairment of intracellular PLP transport. Special issue dedicated to Dr Marion E. Smith.  相似文献   

13.
1. The responses of periphery (PNS) and central nervous systems (CNS) towards nerve injury are different: while injured mammalian periphery nerons can successfully undergo regeneration, axons in the central nervous system are usually not able to regenerate.2. In the present study, the genes which were differentially expressed in the PNS and CNS following nerve injury were identified and compared by microarray profiling techniques.3. Sciatic nerve crush and hemisection of the spinal cord of adult mice were used as the models for nerve injury in PNS and CNS respectively.4. It was found that of all the genes examined, 14% (80/588) showed changes in expression following either PNS or CNS injury, and only 3% (18/588) showed changes in both types of injuries.5. Among all the differentially expressed genes, only 8% (6/80) exhibited similar changes in gene expression (either up- or down-regulation) following injury in both PNS and CNS nerve injuries.6. Our results indicated that microarray expression profiling is an efficient and useful method to identify genes that are involved in the regeneration process following nerve injuries, and several genes which are differentially expressed in the PNS and/or CNS following nerve injuries were identified in the present study.  相似文献   

14.
To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were approximately 153 and approximately 162 Angstrom, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl(2)-containing Ringer's solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl(2) than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave approximately 20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout--intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of approximately 7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.  相似文献   

15.
Protein compositions were determined for sciatic nerve myelin isolated from young and adult control and quaking (Qk) mice. Age-related changes in the relative amounts of large (Pl) and small (Pr) basic proteins were found. In control animals, the ratio Pr/Pl increased with age, a change similar to that observed for the large (Bl) and small (Bs) CNS myelin basic proteins of adult mice. Pr/Pl also increased with age in the Qk mouse sciatic nerve, but only to the point that the value in the adult Qk mouse was similar to that observed for young control animals, a situation reminiscent of the effect of the Qk mutation on CNS basic proteins. Thus, our data suggest that the Qk mutation has a similar effect on peripheral nervous system (PNS) and CNS basic proteins. Our findings are consistent with recent electrophoretic and immunochemical data showing that PNS and CNS myelin basic proteins in rodents are analogous, and they suggest that the genetic program controlling basic protein expression is common to oligodendroglia and Schwann cells.  相似文献   

16.
Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane‐anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'‐3'‐cyclic nucleotide 3'‐phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt‐Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin‐induced demyelination animal model. Taken together, the membrane‐anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries. genesis 52:341–349, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Park JB  Yiu G  Kaneko S  Wang J  Chang J  He XL  Garcia KC  He Z 《Neuron》2005,45(3):345-351
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the question of how these inhibitory signals are transduced in neurons lacking p75. In this study, we demonstrate that TROY (also known as TAJ), a TNF receptor family member selectively expressed in the adult nervous system, can form a functional receptor complex with NgR and LINGO-1 to mediate cellular responses to myelin inhibitors. Also, both overexpressing a dominant-negative TROY or presence of a soluble TROY protein can efficiently block neuronal response to myelin inhibitors. Our results implicate TROY in mediating myelin inhibition, offering new insights into the molecular mechanisms of regeneration failure in the adult nervous system.  相似文献   

18.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

19.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

20.
Several of the proteins used to form and maintain myelin sheaths in the central nervous system (CNS) and the peripheral nervous system (PNS) are shared among different vertebrate classes. These proteins include one-to-several alternatively spliced myelin basic protein (MBP) isoforms in all sheaths, proteolipid protein (PLP) and DM20 (except in amphibians) in tetrapod CNS sheaths, and one or two protein zero (P0) isoforms in fish CNS and in all vertebrate PNS sheaths. Several other proteins, including 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin and lymphocyte protein (MAL), plasmolipin, and peripheral myelin protein 22 (PMP22; prominent in PNS myelin), are localized to myelin and myelin-associated membranes, though class distributions are less well studied. Databases with known and identified sequences of these proteins from cartilaginous and teleost fishes, amphibians, reptiles, birds, and mammals were prepared and used to search for potential homologs in the basal vertebrate, Ciona intestinalis. Homologs of lipophilin proteins, MAL/plasmolipin, and PMP22 were identified in the Ciona genome. In contrast, no MBP, P0, or CNP homologs were found. These studies provide a framework for understanding how myelin proteins were recruited during evolution and how structural adaptations enabled them to play key roles in myelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号