首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a “symbiont ball”.  相似文献   

2.
The distribution of endosymbiotic bacteria in different tissues of queens, males, and workers of the carpenter ant Camponotus floridanus was investigated by light and electron microscopy and by in situ hybridization. A large number of bacteria could be detected in bacteriocytes within the midguts of workers, young virgin queens, and males. Large amounts of bacteria were also found in the oocytes of workers and queens. In contrast, bacteria were not present in oocyte-associated cells or in the spermathecae of mature queens, although occasionally a small number of bacteria could be detected in the testis follicles of males. Interestingly, the number of bacteriocytes in mature queens was strongly reduced and the bacteriocytes contained only very few or no bacteria at all, although the endosymbionts were present in huge amounts in the ovaries of the same animals. During embryogenesis of the deposited egg, the bacteria were concentrated in a ring of endodermal tissue destined to become the midgut in later developmental stages. However, during larval development, bacteria could also be detected in other tissues although to a lesser extent. Only in the last-instar larvae were bacteria found exclusively in the midgut tissue within typical bacteriocytes. Tetracycline and rifampin efficiently cleansed C. floridanus workers of their symbionts and the bacteriocytes of these animals still remained empty several months after treatment had ceased. Despite the lack of their endosymbionts, these adult animals were able to survive without any obvious negative effect under normal cultivation conditions.  相似文献   

3.
Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell–cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell–cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends.  相似文献   

4.
The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94–100%) to the endosymbiont ‘Candidatus Sulcia muelleri’ (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97–99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98–99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.  相似文献   

5.
In contrast to Cicadomorpha, in which numerous symbiotic bacteria have been identified and characterized, the symbionts of fulgoromorphans are poorly known. Here, we present the results of histological, ultrastructural, and molecular analyses of the symbiotic system of the planthopper Ommatidiotus dissimilis. Amplification, cloning, and sequencing of bacterial 16S RNA genes have revealed that O. dissimilis is host to five types of bacteria. Apart from bacteria Sulcia and Vidania, which are regarded as ancestral symbionts of Fulgoromorpha, three additional types of bacteria belonging to the genera Sodalis, Wolbachia, and Rickettsia have been detected. Histological and ultrastructural investigations have shown that bacteria Sulcia, Vidania, and Sodalis house separate bacteriocytes, whereas bacteria Wolbachia and Rickettsia are dispersed within various insect tissue. Additionally, bacteria belonging to the genus Vidania occupy the bacteriome localized in the lumen of the hindgut. Both molecular and microscopic analyses have revealed that all the symbionts are transovarially transmitted between generations.  相似文献   

6.
Symbiotic Bacteria Associated with Stomach Discs of Human Lice   总被引:2,自引:1,他引:1       下载免费PDF全文
The symbiotic bacteria associated with the stomach disc, a large aggregate of bacteriocytes on the ventral side of the midgut, of human body and head lice were characterized. Molecular phylogenetic analysis of 16S rRNA gene sequences showed that the symbionts formed a distinct and well-defined clade in the Gammaproteobacteria. The sequences exhibited AT-biased nucleotide composition and accelerated molecular evolution. In situ hybridization revealed that in nymphs and adult males, the symbiont was localized in the stomach disc, while in adult females, the symbiont was not in the stomach disc but in the lateral oviducts and the posterior pole of the oocytes due to female-specific symbiont migration. We propose the designation “Candidatus Riesia pediculicola” for the louse symbionts.  相似文献   

7.
The aim of the conducted study was to describe the symbiotic systems (the types of symbionts, distribution in the body of the host insect, the transovarial transmission between generations) of two treehoppers: Centrotus cornutus and Gargara genistae by means of microscopic and molecular techniques. We found that each of them is host to four species of bacteriome-inhabiting symbionts. In C. cornutus, ancestral bacterial symbionts Sulcia and Nasuia are accompanied by an additional symbiont—the bacterium Arsenophonus. In the bacteriomes of G. genistae, apart from Sulcia and Nasuia, bacterium Serratia is present. To our knowledge, this is the first report regarding the occurrence of Serratia as a symbiont in Hemiptera: Auchenorrhyncha. Bacteria Sulcia and Nasuia are harbored in their own bacteriocytes, whereas Arsenophonus and Serratia both inhabit their own bacteriocytes and also co-reside with bacteria Nasuia. We observed that both bacteria Arsenophonus and Serratia undergo autophagic degradation. We found that in both of the species examined, in the cytoplasm and nuclei of all of the cells of the bacteriome, bacteria Rickettsia are present. Our histological and ultrastructural observations revealed that all the bacteriome-associated symbionts of C. cornutus and G. genistae are transovarially transmitted from mother to offspring.  相似文献   

8.
Deep-sea mussels of the genus Bathymodiolus (Bivalvia: Mytilidae) harbor symbiotic bacteria in their gills and are among the dominant invertebrate species at cold seeps and hydrothermal vents. An undescribed Bathymodiolus species was collected at a depth of 3,150 m in a newly discovered cold seep area on the southeast Atlantic margin, close to the Zaire channel. Transmission electron microscopy, comparative 16S rRNA analysis, and fluorescence in situ hybridization indicated that this Bathymodiolus sp. lives in a dual symbiosis with sulfide- and methane-oxidizing bacteria. A distinct distribution pattern of the symbiotic bacteria in the gill epithelium was observed, with the thiotrophic symbiont dominating the apical region and the methanotrophic symbiont more abundant in the basal region of the bacteriocytes. No variations in this distribution pattern or in the relative abundances of the two symbionts were observed in mussels collected from three different mussel beds with methane concentrations ranging from 0.7 to 33.7 μM. The 16S rRNA sequence of the methanotrophic symbiont is most closely related to those of known methanotrophic symbionts from other bathymodiolid mussels. Surprisingly, the thiotrophic Bathymodiolus sp. 16S rRNA sequence does not fall into the monophyletic group of sequences from thiotrophic symbionts of all other Bathymodiolus hosts. While these mussel species all come from vents, this study describes the first thiotrophic sequence from a seep mussel and shows that it is most closely related (99% sequence identity) to an environmental clone sequence obtained from a hydrothermal plume near Japan.  相似文献   

9.
The birch blister aphid Hamamelistes betulinus, like most aphids, is host to obligate symbiotic bacterium Buchnera aphidicola. Ultrastructural and molecular analyses did not reveal the presence of secondary symbionts in the body of H. betulinus. The bacteria Buchnera aphidicola are transmitted to the next generation vertically (maternally). The bacteria released from the cytoplasm of the bacteriocyte to the haemolymph migrate to the embryo at the cellular blastoderm stage, through the opening at its posterior pole. Next, the bacteria enter the cytoplasm of newly formed bacteriocytes. The concept of the relationship between the geographic distribution of Hormaphidini aphids and the presence/absence of bacterium Buchnera aphidicola is discussed.  相似文献   

10.
In this study, the cellular organization of the gill that harbors symbiotic bacteria is described in the thyasirid Thyasira falklandica collected from South Shetlands in Antarctic. Sections of the gills revealed that T. falklandica belongs to the gill type 3, as described by Dufour (Biol Bull, 208:200–212, 2005), with an elongated lateral zone along the frontal-abfrontal axis of the gill filaments. The ciliated and intermediary zones looked similar to those described in symbionts-bearing bivalves. The lateral zone is more complex in T. falklandica than in other Thyasiridae already described. Such a zone is composed of four different cell types. Bacteriocytes are abundant in the frontal and abfrontal positions, while the middle part of the lateral zone is occupied mostly by numerous granule cells devoid of bacteria. All along the lateral zone, TEM and SEM observations show some ciliated cells, which are regularly interspersed between bacteriocytes and/or granule cells. Such cells, according to the long double ciliary roots of their cilia, should have a sensory function. Intercalary cells, which have never been observed between bacteriocytes, are restricted to the middle part of the lateral zone where their expansions overlap the adjacent granule cells. Bacterial symbionts occur only extracellularly among long microvilli differentiated by the bacteriocytes. They are abundant, usually spherical in shape (around 0.7 μm length), and covered by the glycocalix from bacteriocyte microvilli. According to TEM views, the empty vesicles located in the periplasmic space should be sulfur storage, as known for other sulfur-oxidizing symbionts.  相似文献   

11.
Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.  相似文献   

12.
The aim of this paper was to identify endosymbiotic microorganisms living in the body cavity of a Polish population of an aphid, Adelges (Sacchiphantes) viridis, as well as to describe their ultrastructure and mode of transmission between generations. Molecular data (amplification and sequencing of 16S rRNA genes) indicated that endosymbionts of A. (S.) viridis are Betaproteobacteria of the species “Candidatus Vallotia virida”. Endosymbiotic bacteria are rod-shaped and localized in the cytoplasm of specific cells, termed bacteriocytes, of host insects. Endosymbionts sharing the same bacteriocytes differ in the density of their cytoplasm. There are two morphotypes of endosymbiotic bacteria: with electron-dense cytoplasm and electron-translucent cytoplasm. Since only bacteria containing electron-dense cytoplasm were observed in the binary fusion stage, differences in density of the cytoplasm are probably due to changes in the cytoskeleton of bacteria during division. Endosymbionts of A. (S.) viridis are transovarially (i.e. via oocytes) transmitted from the mother to the offspring.  相似文献   

13.
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.  相似文献   

14.
The large tropical lucinid clam Codakia orbicularis has a symbiotic relationship with intracellular, sulfide-oxidizing chemoautotrophic bacteria. The respiration strategies utilized by the symbiont were explored using integrative techniques on mechanically purified symbionts and intact clam-symbiont associations along with habitat analysis. Previous work on a related symbiont species found in the host lucinid Lucinoma aequizonata showed that the symbionts obligately used nitrate as an electron acceptor, even under oxygenated conditions. In contrast, the symbionts of C. orbicularis use oxygen as the primary electron acceptor while evidence for nitrate respiration was lacking. Direct measurements obtained by using microelectrodes in purified symbiont suspensions showed that the symbionts consumed oxygen; this intracellular respiration was confirmed by using the redox dye CTC (5-cyano-2,3-ditolyl tetrazolium chloride). In the few intact chemosymbioses tested in previous studies, hydrogen sulfide production was shown to occur when the animal-symbiont association was exposed to anoxia and elemental sulfur stored in the thioautotrophic symbionts was proposed to serve as an electron sink in the absence of oxygen and nitrate. However, this is the first study to show by direct measurements using sulfide microelectrodes in enriched symbiont suspensions that the symbionts are the actual source of sulfide under anoxic conditions.  相似文献   

15.
Summary

Codakia orbicularis is a tropical lucinid harboring gill endosymbionts which are environmentally transmitted from a free living-symbiont form to the new host generation after metamorphosis. Structural changes occurring in the cellular organization from incomplete gill filaments in young aposymbiotic juveniles to full differentiated gill filaments containing bacterial endosymbionts in reared symbiotic juveniles, were analyzed for juveniles from 250 μm to 2 μm shell-length. Aposymbiotic juveniles possess differentiated gill filaments with ciliated, intermediary, and lateral zones similar to those described in wild juveniles, except for the bacteriocytes which are lacking. Granule cells, which progressively differentiate during the morphogenesis of the gill filament, do not appear as a consequence of symbiosis. Experimental colonization of aposymbiotic juveniles by the free-living symbiont form has been obtained through the addition of unsterilized sand collected from the natural habitat of C. orbicularis. Two days after exposure to crude sand, symbiosis-competent bacteria enter by endocytosis at the apical pole of undifferentiated cells which progressively differentiate into classical bacteriocytes similar to those found in the adult gill filaments. Undifferentiated cells of aposymbiotic gill filaments remain receptive to bacteria several months after metamorphosis, and become bacteriocytes when aposymbiotic juveniles get contact with the symbiont free-living form. Therefore, the environmental transmission of symbionts does not appear to be restrained to a defined period of time during post-larval development in C. orbicularis.  相似文献   

16.
17.
The dynamics of replication of the intracellular endosymbiotic bacterium Blochmannia floridanus was determined during the larval development of its host ant Camponotus floridanus by real-time quantitative PCR. The bacteria were found to proliferate during pupation and immediately after the eclosion of the imagines (adult ants). In older workers the number of bacteria present in the midgut bacteriocytes decreased significantly. In contrast, the bacterial population in the ovaries was dependent on the reproductive state of the animal. An age-dependent degeneration of the midgut bacteriocytes was also investigated by microscopic techniques in males and female castes of the closely related ant species C. herculeanus and C. sericeiventris, respectively, with similar results and supports the concept of age-dependent degeneration of the midgut bacteriocytes in all castes.  相似文献   

18.
We characterized the intracellular symbiotic microbiota of the bamboo pseudococcid Antonina crawii by performing a molecular phylogenetic analysis in combination with in situ hybridization. Almost the entire length of the bacterial 16S rRNA gene was amplified and cloned from A. crawii whole DNA. Restriction fragment length polymorphism analysis revealed that the clones obtained included three distinct types of sequences. Nucleotide sequences of the three types were determined and subjected to a molecular phylogenetic analysis. The first sequence was a member of the γ subdivision of the division Proteobacteria (γ-Proteobacteria) to which no sequences in the database were closely related, although the sequences of endosymbionts of other homopterans, such as psyllids and aphids, were distantly related. The second sequence was a β-Proteobacteria sequence and formed a monophyletic group with the sequences of endosymbionts from other pseudococcids. The third sequence exhibited a high level of similarity to sequences of Spiroplasma spp. from ladybird beetles and a tick. Localization of the endosymbionts was determined by using tissue sections of A. crawii and in situ hybridization with specific oligonucleotide probes. The γ- and β-Proteobacteria symbionts were packed in the cytoplasm of the same mycetocytes (or bacteriocytes) and formed a large mycetome (or bacteriome) in the abdomen. The spiroplasma symbionts were also present intracellularly in various tissues at a low density. We observed that the anterior poles of developing eggs in the ovaries were infected by the γ- and β-Proteobacteria symbionts in a systematic way, which ensured vertical transmission. Five representative pseudococcids were examined by performing diagnostic PCR experiments with specific primers; the β-Proteobacteria symbiont was detected in all five pseudococcids, the γ-Proteobacteria symbiont was found in three, and the spiroplasma symbiont was detected only in A. crawii.  相似文献   

19.
We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X-symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA of A. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X-symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号