首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q p for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l?1 in 48 h with the yield of 0.051 g g?1 by applying this strategy, which were 20.5 and 21.4 % over the best results controlled by constant agitation speeds.  相似文献   

2.
In this study, the effects of several key factors to increase spore production by Bacillus subtilis subsp. KATMIRA 1933 were evaluated in shake flask experiments. In a synthetic medium, glucose concentration played a crucial role in the expression of bacilli sporulation capacity. In particular, maximum spore yield (2.3 × 109 spores/mL) was achieved at low glucose concentration (2 g/L), and further gradual increase of the carbon source content in the medium caused a decrease in sporulation capacity. Substitution of glucose with several inexpensive lignocellulosic materials was found to be a reasonable way to achieve high cell density and sporulation. Of the materials tested, milled mandarin peels at a concentration of 40 g/L served as the best growth substrate. In these conditions, bacilli secreted sufficient levels of glycosyl hydrolases, providing slow hydrolysis of the mandarin peel’s polysaccharides to metabolizable sugars, providing the bacterial culture with an adequate carbon and energy source. Among nitrogen sources tested, peptone was found to favor spore production. Moreover, it was shown that cheese and cottage cheese whey usage, instead of distilled water, significantly increases spore formation. After optimization of the nutrient medium in the shake flask experiments, the technical feasibility of large-scale spore production by B. subtilis KATMIRA 1933 was confirmed in a laboratory fermenter. The spore yield (7 × 1010 spores/mL) obtained using a bioreactor was higher than those previously reported.  相似文献   

3.
The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l?1 caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h?1, maximum degradation rate of 1.1 g h?1, and caffeine demethylase activity of 18,762 U g CDW?1 (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l?1) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R 2 = 0.94), Luong (R 2 = 0.92), and Yano and Koga 2 (R 2 = 0.94) models were found to be the best. The Luedeking–Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.  相似文献   

4.
A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.  相似文献   

5.
In this study, sodium gluconate was applied as a novel carbon source for the fuel ethanol production using an engineered Escherichia coli strain KO11 in batch fermentations. Ethanol and acetic acid were produced as two major products as well as small amount of lactic acid during the fermentation. Compared to the conventional carbon source glucose, the bioconversion of sodium gluconate possessed two distinct advantages: faster utilization rate of sodium gluconate (1.66 g/L per h) compared to glucose (0.996 g/L per h) and no requirement for pH control during fermentation. A general inhibition model including both substrate and products inhibitory effects was proposed, which adequately simulated batch fermentation kinetics at various concentrations of sodium gluconate. All of the products showed inhibitory effects on cell growth. The order of the inhibitory strength of all products and substrate was for the first time clarified in this study. Acetic acid was the most inhibitory product mitigating the cell growth, followed by ethanol and lactic acid. Sodium gluconate stimulated cell growth when its concentration was below 16 g/L, while it inhibited the cell growth when the concentration was above this concentration. It completely inhibited the cell growth when the concentration was 325 g/L. The high value of both the coefficient of determination (R 2) and the adjusted R 2 verified the good fit of the model. This paper provides key insights into further engineering these strains to improve ethanol production.  相似文献   

6.
The effects of oxidoreduction potential (ORP) regulation on the process of propionic acid production by Propionibacterium freudenreichii CCTCC M207015 have been investigated. Potassium ferricyanide and sodium borohydride were determined as ORP control agents through serum bottle experiment. In batch fermentation, cell growth, propionic acid and by-products distribution were changed with ORP levels in the range of 0–160 mV. Based on these analysis results, an ORP-shift control strategy was proposed: at first 156 h, ORP was controlled at 120 mV to obtain higher cell growth rate and propionic acid formation rate, and then it was shifted to 80 mV after 156 h to maintain the higher propionic acid formation rate. By applying this strategy, the optimal parameters were obtained as follows: the propionic acid concentration 45.99 g L?1, productivity 0.192 g L?1 h?1, the proportion of propionic acid to total organic acids 92.26 % (w/w) and glycerol conversion efficiency 76.65 %. The mechanism of ORP regulation was discussed by the ratio of NADH/NAD+, ATP levels, and metabolic flux analysis. The results suggest that it is possible to redistribute energy and metabolic fluxes by the ORP-shift control strategy, and the strategy could provide a simple and efficient tool to realize high purity propionic acid production with glycerol as carbon source.  相似文献   

7.
Bacillus subtilis mutants were obtained after the wild strain JNA 3-10 was mutagenized by UV irradiation coupled with diethyl sulfate. A visual filter assay was employed for the qualitative identification of 2,3-butanediol dehydrogenase (BDH) blocked B. subtilis. Selected mutants were tested for the activities of acetoin reductase (AR) and BDH. According to further batch fermentation, one mutant named JNA-UD-6 that produced 24.3 % more acetoin than JNA 3-10 with the corresponding byproducts of 2,3-butanediol decreased by 39.8 % was isolated. A nonsense mutation (p.Tyr118X) that precluded the synthesis of a full-length functional AR/BDH within the bdhA gene of JNA-UD-6 was detected. Acetoin production of JNA-UD-6 was further improved to about 53.9 g/L in a 5-L fermentor with 150 g/L glucose consumed. However,a small amount of 2,3-butanediol was found in late phase of JNA-UD-6 fermentation, and it was due to the existence of a putative gene that encoding a minor AR. This work proved a strategy to efficiently breeding an acetoin high producing strain by traditional mutation methods.  相似文献   

8.
Recently, Corynebacterium glutamicum has been shown to exhibit gluconate bypass activity, with two key enzymes, glucose dehydrogenase (GDH) and gluconate kinase, that provides an alternate route to 6-phosphogluconate formation. In this study, gene disruption analysis was used to examine possible metabolic functions of three proteins encoded by open reading frames having significant sequence similarity to GDH of Bacillus subtilis. Chromosomal in-frame deletion of three genes (NCgl0281, NCgl2582, and NCgl2053) encoding putative NADP+-dependent oxidoreductases led to the absence of GDH activity and correlated with increased specific glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities. This finding suggested that enhanced carbon flux from glucose was directed toward the oxidative pentose phosphate (PP) pathway, when the mutant was cultivated with 6 % glucose. Consequently, the mutant showed 72.4 % increased intracellular NADPH and 66.3 % increased extracellular l-ornithine production. The enhanced activities of the oxidative PP pathway in the mutant explain both the increased intracellular NADPH and the high extracellular concentration of l-ornithine. Thus, the observed metabolic changes in this work corroborate the importance of NADPH in l-ornithine production from C. glutamicum.  相似文献   

9.
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L?1 glucose/20 g L?1 xylose and 20 g L?1 glucose/20 g L?1 xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L?1) and cell mass concentration (4.42 g L?1) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L?1 glucose/20 g L?1 xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.  相似文献   

10.
Optimum production of l-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of l-tryptophan. The optimum pH range was 6.5–7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0–12 h), pH 6.8 (12–24 h), and pH 7.2 (24–38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24–38 h. Under these conditions, NH4 + and K+ concentrations were kept below the threshold for inhibiting l-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5–24 h) and 6:1 (24–38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of l-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.  相似文献   

11.
Total of 171 alkaliphilic actinomycetes were evaluated for extracellular RNase production and Streptomyces sp. M49-1 was selected for further experiments. Fermentation optimization for RNase production was implemented in two steps using response surface methodology with central composite design. In the first step, the effect of independent fermentation variables including temperature, initial pH and process time were investigated. After identification of carbon and nitrogen sources affecting the production by one variable at a time method, concentrations of glucose and yeast extract and also inoculum size were chosen for the second central composite design. A maximum RNase activity was obtained under optimal conditions of 4.14 % glucose concentration, 4.63 % yeast extract concentration, 6.7 × 106 spores as inoculum size for 50 ml medium, 42.9 °C, 91.2 h process time and medium initial pH 9.0. Optimum activity of the enzyme is achieved at pH 11 and temperature 60 °C. The enzyme is highly stable at pH range 9.0–12.0 and at 90 °C after 2 h. Statistical optimization experiments provide 2.25 fold increases in the activity of alkalotolerant and thermostable RNase and shortened the fermentation time compared to that of unoptimized condition. The members of Streptomyces can be promising qualified RNase producer for pharmaceutical industries.  相似文献   

12.
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (São Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL?1) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h?1. Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L?1) and 10% (139.47 g L?1) and the specific total EPS production was higher in 10% molasses medium (39.03 × 10?11 g c.f.u.?1). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.  相似文献   

13.

Background

Alkaline amylase has significant potential for applications in the textile, paper and detergent industries, however, low yield of which cannot meet the requirement of industrial application. In this work, a novel ARTP mutagenesis-screening method and fermentation optimization strategies were used to significantly improve the expression level of recombinant alkaline amylase in B. subtilis 168.

Results

The activity of alkaline amylase in mutant B. subtilis 168 mut-16# strain was 1.34-fold greater than that in the wild-type, and the highest specific production rate was improved from 1.31 U/(mg·h) in the wild-type strain to 1.57 U/(mg·h) in the mutant strain. Meanwhile, the growth of B. subtilis was significantly enhanced by ARTP mutagenesis. When the agitation speed was 550 rpm, the highest activity of recombinant alkaline amylase was 1.16- and 1.25-fold of the activities at 450 and 650 rpm, respectively. When the concentration of soluble starch and soy peptone in the initial fermentation medium was doubled, alkaline amylase activity was increased 1.29-fold. Feeding hydrolyzed starch and soy peptone mixture or glucose significantly improved cell growth, but inhibited the alkaline amylase production in B. subtilis 168 mut-16#. The highest alkaline amylase activity by feeding hydrolyzed starch reached 591.4 U/mL, which was 1.51-fold the activity by feeding hydrolyzed starch and soy peptone mixture. Single pulse feeding-based batch feeding at 10 h favored the production of alkaline amylase in B. subtilis 168 mut-16#.

Conclusion

The results indicated that this novel ARTP mutagenesis-screening method could significantly improve the yield of recombinant proteins in B. subtilis. Meanwhile, fermentation optimization strategies efficiently promoted expression of recombinant alkaline amylase in B. subtilis 168 mut-16#. These findings have great potential for facilitating the industrial-scale production of alkaline amylase and other enzymes, using B. subtilis cultures as microbial cell factories.
  相似文献   

14.
After over 100 strains of Aureobasidium spp isolated from mangrove system were screened for their ability to produce poly(β-malic acid) (PMA), it was found that Aureobasidium sp. P6 strain among them could produce high level of Ca2+-PMA. Fourteen percent glucose and 6.5 % CaCO3 in the medium were the most suitable for Ca2+-PMA production. Then, 100.7 g/l of Ca2+-PMA was produced using Aureobasidium sp. P6 strain within 168 h at flask level. During 10-l batch fermentation, when the medium contained 12.0 % glucose, 98.7 g/l of Ca2+-PMA in the culture and 14.7 g/l of cell dry weight were obtained within 156 h, leaving 0.34 % reducing sugar in the fermented medium. When glucose concentration in the fermentation medium was 14.0 %, 118.3 g/l of Ca2+-PMA in the culture and 16.4 g/l of cell dry weight were obtained within 168 h, leaving 0.4 % reducing sugar in the fermented medium. After purification of Ca2+-PMA from the culture and acid hydrolysis of the pure Ca2+-PMA, analysis of HPLC showed that Aureobasidium sp. P6 strain only produced two main components of Ca2+-PMA and minor amount of calcium malate and that the hydrolysate of PMA was mainly composed of calcium malate. This is the first time to report that the novel yeast strain Aureobasidium sp. P6 strain isolated from the mangrove systems can produce such high amount of Ca2+-PMA.  相似文献   

15.
Phosphate depletion is one of the favorable ways to enhance the sewage water treatment with the algae, however, detailed information is essential with respect to internal phosphate concentration and physiology of the algae. The growth rate of the phosphate-starved Scenedesmus cells was reduced drastically after 48 h. Indicating cells entered in the stationary phase of the growth cycle. Fourier Transform Infrared analysis of phosphate-starved Scenedesmus cells showed the reduction in internal phosphate concentration and an increase in carbohydrate/phosphate and carbohydrate/lipid ratio. The phosphate-starved Scenedesmus cells, with an initial cell density of, 1 × 106 cells mL?1 shows 87% phosphate and 100 % nitrogen removal in 24 h. The normal Scenedesmus cells need approximately 48 h to trim down the nutrients from wastewater up to this extent. Other microalgae, Ankistrodesmus, growth pattern was not affected due to phosphate starvation. The cells of Ankistrodesmus was able to reduce 71% phosphate and 73% nitrogen within 24 h, with an initial cell density of, 1 × 106 cells mL?1.  相似文献   

16.

Objectives

To direct the carbon flux from Krebs cycle into the gamma-aminobutyric acid (GABA) shunt pathway for the production of GABA by protein scaffold introduction in Escherichia coli.

Results

Escherichia coli was engineered to produce GABA from glucose by the co-localization of enzymes succinate semialdehyde dehydrogenase (GadD), GABA aminotransferase (PuuE) and GABA transporter (GadC) by protein scaffold. 0.7 g GABA l?1 was produced from 10 g glucose l?1 while no GABA was produced in wild type E. coli. pH 6 and 30 °C were optimum for GABA production, and GABA concentration increased to 1.12 g GABA l?1 when 20 g glucose l?1 was used. When competing metabolic networks were inactivated, GABA increased by 24 % (0.87 g GABA l?1).

Conclusions

The novel GABA production system was constructed by co-localization of GABA shunt enzymes.
  相似文献   

17.
A photosynthetic algal microbial fuel cell (PAMFC) was constructed by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells to fulfill electricity generation, biomass production and wastewater treatment. The immobilization conditions, including the concentration of immobilized matrix, initial inoculation concentration and cross-linking time, were investigated both for the growth of C. vulgaris and power generation. It performed the best at 5 % sodium alginate and 2 % calcium chloride as immobilization matrix, initial inoculation concentration of 106 cell/mL and cross-linking time of 4 h. Our findings indicated that C. vulgaris immobilization was an effective and promising approach to improve the performance of PAMFC, and after optimization the power density and Coulombic efficiency improved by 258 and 88.4 %, respectively. Important parameters such as temperature and light intensity were optimized on the performance. PAMFC could achieve a COD removal efficiency of 92.1 %, and simultaneously the maximum power density reached 2,572.8 mW/m3 and the Coulombic efficiency was 14.1 %, under the light intensity of 5,000 lux and temperature at 25 °C.  相似文献   

18.
Microalgal starch is a potential feedstock for biofuel production. Nutrient stress is widely used to stimulate starch accumulation in microalgae. Cell growth and starch accumulation in the marine green microalga Tetraselmis subcordiformis were evaluated under extracellular phosphorus deprivation with initial cell densities (ICD) of 1.5, 3.0, 6.0, and 9.0?×?106 cells mL?1. The intracellular stored phosphorus supported cell growth when extracellular phosphorus was absent. The maximum starch content of 44.1 % was achieved in the lowest ICD culture, while the maximum biomass productivity of 0.71 g L?1 day?1, starch concentration of 1.6 g L?1, and starch productivity of 0.30 g L?1 day?1 were all obtained in the culture with the ICD of 3.0?×?106 cells mL?1. Appropriate ICD could be used to regulate the intracellular phosphorus concentration and maintain adequate photosynthetic activity to achieve the highest starch productivity, along with biomass and starch concentration. The recovery of phosphorus-deprived T. subcordiformis in medium containing 0.5, 1.0, or 6.0 mM KH2PO4 was also tested. Cell growth and starch accumulation ability could be recovered completely. A phosphorus pool in T. subcordiformis was shown to manipulate its metabolic activity under different environmental phosphorus availability. Though lower starch productivity and starch content were achieved under phosphorus deprivation compared with nitrogen- or sulfur-deprived conditions, the higher biomass and starch concentration make T. subcordiformis a good candidate for biomass and starch production under extracellular phosphorus deprivation.  相似文献   

19.

Objectives

To construct a Bacillus subtilis strain for improved uridine production.

Results

The AAG2846–2848 fragment of the pyrAB gene, encoding carbamoylphosphate synthetase, was deleted in B. subtilis TD246 leading to a 245% increase of uridine production and the conversion from glucose to uridine increased by 10.5%. Overexpression of the pyr operon increased the production of uridine by a further 31% and the conversion rate of glucose to uridine was increased by 18%. In addition, the blocking of arginine synthesis or disabling of glutamate dehydrogenase significantly enhanced the uridine production. The highest-producing strain, B. subtilis TD297, accumulated 11 g uridine/l with a yield of 240 mg uridine/g glucose in shake-flask cultivation.

Conclusion

This is the first report of engineered B. subtilis strains which can produce more than 11 g uridine/l, with a yield reaching 240 mg uridine/g glucose in shake-flask cultivation.
  相似文献   

20.
The effect of fed-batch operation (FBO) strategy was investigated using pretreated-beet molasses, containing galactose that induces the lac promoter, on benzaldehyde lyase (BAL) production by recombinant Escherichia coli BL21(DE3)pLySs. After batch cultivation with 30 g l?1 pretreated-beet molasses consisting of 7.5 g l?1 glucose and 7.5 g l?1 fructose, three FBO strategies were applied at dissolved oxygen (=40%) cascade to air-flow rate. In FBO1 when air-flow rate decreased considerably, feed was given to the system in pulses in such a way that pretreated-beet molasses concentration increased by 10 kg m?3 (containing 2.5 g l?1 glucose+2.5 g l?1 fructose); however, decrease in air-flow rate demonstrated only the absence of glucose but not fructose. Thus, in FBO2 when fructose and glucose were completely utilized, pretreated-beet molasses was pulse-fed and its concentration increased by 10 g l?1. In FBO3 with the decreased amount of pretreated-beet molasses (6 g l?1), shift response time from glucose to fructose consumption was avoided, and glucose and fructose consumptions were well correlated with air-flow rate, and the highest C X (8.04 g l?1) and BAL (2,315 U ml?1) production were obtained (t?=?24 h) with the highest substrate yield on cell and product formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号