首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum T3 and a rise in reverse T3 in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is inhibited in primary hypothyroidism and is almost totally suppressed following L-thyroxine replacement therapy, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in subjects with primary hypothyroidism who were rendered euthyroid by appropriate L-thyroxine replacement therapy for several years. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4, and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.05) and a marked rise in rT3 (P less than 0.05) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Since, the release of thyroid hormones is suppressed by exogenous LT4 administration in these subjects; we conclude that changes in serum T3 and rT3 observed following glucagon administration reflect altered thyroid hormone metabolism in peripheral tissues and not altered release by the thyroid gland.  相似文献   

2.
Euthyroid sick syndrome is characterized by low serum T3 and raised reverse T3 (rT3). Most of the states with this syndrome are also documented to manifest hyperglucagonemia. Furthermore, several recent studies have suggested that glucagon may play a role in T4 monodeiodination in some of these states such as starvation and uncontrolled diabetes mellitus. Therefore, hyperglucagonemia was induced by intravenous glucagon administration in euthyroid healthy volunteers and thyroid hormone levels were determined at frequent intervals up to six hours. Plasma glucose and insulin rose promptly on glucagon administration, thus establishing the physiologic effect of glucagon. Serum T4, free T4, T3 resin uptake, and TSH concentrations remained unaltered throughout the study period. Serum T3 declined to a significantly low level (P less than 0.05) between 60-90 minutes. Serum rT3 rose significantly (P less than 0.05) by four hours and the rise was progressive till the end of the study period. Therefore, these results suggest that hyperglucagonemia may be one of the factors responsible for lowering of T3 and a rise in rT3 in euthyroid sick syndrome.  相似文献   

3.
We have attempted to determine if mild hyperglucagonemia induced by exogenous glucagon infusion induces changes of serum thyroid hormone levels. Eleven healthy subjects, overnight fasting, received glucagon infusion (2 mg/90 min i.v.), whereas 5 healthy subjects (control group) received normal saline infusion. In the subjects infused with exogenous glucagon plasma glucagon concentrations increased from 130 +/- 24 pg/ml to 550 +/- 68 pg/ml at the end of infusion. At the same time no significant changes in serum T3, rT3 and T4 levels were found. A significant increase in serum rT3 levels was found 270 min after glucagon infusion withdrawal, whereas serum T4 levels remained unaltered during the whole period. Normal saline infusion failed to induce any variation in control group, however a late (at 6th hour) mild increase of serum rT3 in these subjects resulted comparable to the same increase of glucagon infused subjects. The results from this study suggest that mild increase in plasma glucagonemia, as found in patients with severe illness, does not induce a short-time significant lowering of serum T3 and a simultaneous rise of serum rT3 in normal subjects.  相似文献   

4.
Although patients with primary hyperparathyroidism (1 degree HPT) were euthyroid, we measured serum thyroid hormone levels in 16 patients with 1 degree HPT together with 17 patients with hypercalcemia due to malignant diseases (HCM). In patients with 1 degree HPT, serum levels of T3, T4 and T3U were within normal range, but serum rT3 (reverse T3) levels (205 +/- 37 pg/ml, mean +/- SD) were significantly decreased as compared with those in normal controls (276 +/- 44 pg/ml, P less than 0.01). A significant inverse correlation was observed between the serum levels of rT3 and parathyroid hormone (PTH) (r = 0.54, P less than 0.05). After parathyroidectomy, serum rT3 levels were significantly elevated (240 +/- 56 pg/ml) compared to preoperative levels (P less than 0.01). Low levels of serum rT3 seemed to be attributed to the high levels of serum PTH. On the other hand, serum levels of T3 and T4 were low and serum rT3 levels were high in patients with HCM. Low serum rT3 allows for the differentiation of patients with 1 degree HPT from those with HCM.  相似文献   

5.
The present paper describes (i) a hydrolysis technique with Pronase and leucine aminopeptidase using one rat thyroid gland, resulting in maximum release of thyroid hormones and minimum deiodination, and (ii) a simple and rapid procedure for thyroid hormone radioimmunoassays in thyroid hydrolysates using commercial kits intended for serum thyroid hormone determinations. The procedure is used to determine T4, T3, and rT3 concentrations and hormonal molar ratios in a thyroid gland from a male Wistar rat. The reliability of the method is also studied.  相似文献   

6.
The Relationship between ouabain-sensitive ATPase (Na-K ATPase) activity in erythrocytes and the thyroid status was studied in 36 patients with Graves' disease and 58 patients receiving L-thyroxine (T4) replacement therapy. Forty normal children served as control. Total ATPase activity in 4 untreated hypothyroid patients was significantly reduced (11.0 +/- 4.6 vs 17.3 +/- 4.1 micrograms-P/h/mg-protein, P less than 0.01), and Na-K ATPase was undetectable, both of which were normalized after 4 weeks of L-T4 therapy. Na-K ATPase in hyperthyroid patients was also decreased (0.9 +/- 0.8 vs. 4.0 +/- 2.7, P less than 0.01), but was gradually normalized after 3 months of euthyroid state. Clinically euthyroid children treated with L-T4 were divided into 2 groups with regard to Na-K ATPase activity, normal and low. Analysis of the possible factors producing this difference revealed that, in primary hypothyroidism, the factor appeared to be the endogenous T4 level, while in patients with dwarfism, the secretory capacity of TSH or TSH-releasing hormone (TRH) was contributory. Thus Na-K ATPase activity in red cells remains within the normal range after L-T4 replacement in the presence of a severe degree of primary hypothyroidism or in association with secondary or tertiary hypothyroidism. Other factors such as the L-T4 dose, duration of the therapy, serum T4 and T3 concentrations, were not significantly different in the two groups. These results indicate that (1) Na-K ATPase in red cells is decreased in hyper- or hypothyroid state, (2) restoration of normal activity requires 1-3 months of euthyroid period, and (3) it is a sensitive index of peripheral thyroid status over the preceding few months.  相似文献   

7.
The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.  相似文献   

8.
The authors studied total and free circulating thyroid hormones, rT3, TBG and TSH behaviour on chronic liver disease in 11 subjects with cirrhosis of the liver with ascites(C.E.) and in 6 subjects with chronic active hepatitis (E.C.A.) in comparison with 15 healthy and euthyroid controls. Serum T3,FT3,T4 and FT4 levels were decreased significantly and serum rT3 values increased significantly both in the subjects with C.E. and in patients with E.C.A. Moreover no significantly changes of TSH and TBG levels has been found in 3 groups studied. These data suggest that the alteration of circulating thyroid hormones in chronic liver disease, may represent a compensatory way of reducing the patient's metabolic requirements.  相似文献   

9.
To investigate the thyroid hormone metabolism in altered states of thyroid function, serum concentrations of 3, 3'-diiodothyronine (3, 3'-T2), 3', 5'-T2 and 3, 5-T2 as well as T4, T3 and rT3 were determined by specific radioimmunoassays in 17 hyperthyroid and 10 hypothyroid patients, before and during the treatment. Serum T4, T3, rT3, 3, 3'-T2 and 3', 5'-T2 concentrations were all higher in the hyperthyroid patients than in age-matched controls and decreased to the normal ranges within 3 to 4 months following treatment with antithyroid drugs. In the hypothyroid patients, these iodothyronine concentrations were lower than in age-matched controls and returned to the normal ranges after 2 to 3 months treatment with T4. In contrast, serum 3, 5-T2 concentrations in hyperthyroid patients (mean +/- SE : 4.0 +/- 0.5 ng/dl) were not significantly different from those in controls (3.9 +/ 0.4 ng/dl), although they tended to decrease in 3 of 6 patients after the antithyroid drug therapy. Serum 3, 5-T2 levels in the hypothyroid patients (3.8 +/- 0.6 ng/dl) were also within the normal range and showed no significant change following the T4 replacement therapy. However, serum 3, 5-T2 as well as 3, 3'T2 concentrations rose significantly with a marked rise in serum T3 following T3 administration, 75 micrograms/day for 7 days, in Graves' patients in euthyroid state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Thyroid hormone regulation of beta-adrenergic receptor-coupled adenylate cyclase activity was studied in rat liver and heart particulate fractions. Thyroidectomy (Tx) increased isoproterenol-stimulated cAMP accumulation in the liver and decreased it in the heart. Administration of L-thyroxine (L-T4) or L-3,3',5-triiodothyronine (L-T3) reversed these changes in both liver and heart. The changes observed in liver beta-receptor-coupled adenylate cyclase activity after Tx were similar to those reported after adrenalectomy (ADX). Thus the hypothesis was considered that these changes with altered thyroid status are produced indirectly through alteration in adrenal corticosteroids. Hydrocortisone in Tx rats decreased liver isoproterenol-stimulated adenylate cyclase activity but had no significant effect on the heart. Serum corticosterone levels were decreased significantly (by 34%) in Tx rats, as compared to euthyroid rats. Administration of L-T4 to Tx rats doubled the serum corticosterone levels. In Tx-ADX rats, L-T4 had no significant effect on liver beta-receptor-coupled adenylate cyclase. However, L-T4 significantly increased heart beta-receptor-coupled adenylate cyclase in these animals. Dexamethasone, but not deoxycorticosterone, decreased liver isoproterenol-stimulated cAMP accumulation in Tx animals to the same extent as was observed with L-T4 and hydrocortisone. Thus overall the results indicate that in the liver, as opposed to the heart, thyroid hormones regulate beta-adrenergic receptor-coupled adenylate cyclase indirectly through corticosteroids. Glucocorticoid rather than mineralocorticoid activity seems to be responsible for this regulation.  相似文献   

11.
Serum thyroid hormone and TSH concentrations were measured before and after the administration of TRH (10 micrograms/kg body weight) and bovine TSH (10 IU) in 14 children with chronic lymphocytic thyroiditis. The TRH test showed that the responsiveness of TSH was positively correlated with the basal TSH (P less than 0.001) and inversely with the increase in serum thyroid hormones, for delta T3 (P less than 0.05) and for delta T4 (P less than 0.001). Overall, the patients had significantly lower mean values for basal T4, but not for T3. The TSH test revealed that the delta T3 was positively correlated with delta T4 (P less than 0.05). delta T3 after TSH administration was positively correlated with it after TRH (P less than 0.05). The patients were divided into three groups on the basis of their peak TSH values after TRH administration. In Group 1 (peak value below 40 microU/ml; N = 5); T3 increased significantly after TRH and TSH administrations (P less than 0.05 and P less than 0.025, respectively). In addition, delta T4 was significant after TSH administration. In Group 2 (peak TSH above 40 and less than 100 microU/ml; N = 6); only delta T3 after TRH was significant (P less than 0.05). In Group 3 (peak TSH above 100 microU/ml; N = 3); the response of thyroid hormones was blunted. Thus, the thyroid hormone responses to endogenous TSH coincided with that to exogenous TSH, and the exaggerated TSH response to TRH indicates decreased thyroid reserve.  相似文献   

12.
Thyroid function was studied in small for gestational age (SGA) or control newborn lambs. Neonatal changes in plasma concentrations of TSH, T3, rT3, total and free T4 were monitored, and thyroid scintigraphs were performed. Responsiveness of the hypothalamic-pituitary-thyroid axis to cold exposure and TRH or TSH administration was assessed. In addition, T4 and T3 kinetic studies were performed. In agreement with results obtained in babies, plasma T3, total T4 and free T4 concentrations were depressed in low birth weight animals, whereas TSH and rT3 levels were not affected. Thyroid size expressed relatively to the body weight was higher in SGA animals, thus suggesting that a partial compensation for low thyroid hormone levels had occurred during the fetal life. Plasma TSH and T4 concentrations increased by a same extent after exposure to cold and TRH or TSH administration in SGA and control lambs; however, the rise in T3 levels was depressed in the former in all stimulation tests. T3 and T4 production rates were similar in the two experimental groups. In SGA lambs, the metabolic clearance rate and the total distribution space of these two hormones were significantly increased; the fast T3 pool was higher, and the slow T3 pool lower than in control animals. All these results demonstrate that, despite low circulating thyroid hormone concentrations, SGA lambs are not hypothyroid. An increased T4 and T3 storage in the extravascular compartment is probably the major factor involved in the occurrence of this plasma deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To investigate the hypothesis of an altered dopaminergic activity in hypothyroidism, seven patients without thyroid tissue were studied by means of three consecutive tests: an iv bolus of TRH (200 micrograms); a continuous iv infusion (5 mg during 30 min) of metoclopramide (MCP); and a second, post-MCP, iv bolus of TRH (200 micrograms). The study was performed three times: (A) without treatment; (B) on the 15th day while on L-T4 (150 micrograms i.d.); and (C) on the 30th day with the same treatment. Each time was a different situation of thyroid function; on the basis of basal serum TSH (P less than 0.001, A vs B vs C). The response of PRL to the first (non-primed) TRH, expressed as the sum of increments in ng/ml (mean +/- SE), was significantly higher in A (659 +/- 155) than in C (185 +/- 61). Individual PRL responses correlated with circulating T3 (P less than 0.02), but not with T4. A significant increase of PRL occurred after MCP in the three situations, but there were no differences among them. Likewise, the responses to the second (MCP-primed) TRH showed no differences. Although there was an expected high correlation (P less than 0.001) between basal TSH and circulating thyroid hormones, the maximal response of TSH to both non-primed and MCP-primed TRH was in B. After MCP, no measurable increase of TSH could be demonstrated at any of the three levels of thyroid function. These results do not support the hypothesis of an altered dopaminergic activity in hypothyroidism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The studies comparing the actions of dried thyroid gland (Thyroideum-Polfa) with L-thyroxine sodium (L-T4) were carried out in 20 female patients with hypothyroidism, including 19 patients with the primary hypothyroidism and 1 patient with hypothyroidism secondary to pituitary deficiency. Administration of the dried thyroid gland did not normalize blood serum T4 an TSH in any patient. Normal serum T4 or even slightly increased was achieved in all patients treated with L-T4. Serum TSH was normalized in 17 patients with the primary hypothyroidism. The following conclusions have been drawn: 1. Dried thyroid gland (Thyroideum-Polfa) is ineffective in the treatment of hypothyroidism. 2. Serum TSH remains elevated despite normal serum T3 in cases of the primary hypothyroidism with decreased serum T4 levels. 3. Sodium salt of L-thyroxine should be used for the treatment of hypothyroidism. 1-Triiodothyronine sodium may be used as an adjuvant therapy.  相似文献   

15.
Thyroxine (T4), triiodothyronine (T3) and reverse triodothyronine (rT3) concentrations in human milk were measured by radioimmunoassay in 114 samples obtained from 1 week to 8 months postpartum. Several assay systems applied for the determination of serum thyroid hormone concentration were proved to be unsuitable for human milk, and the method of separating free and antibody-bound hormone by polyethylene glycol was also inappropriate for milk specimens, which tended to give a falsely high value. The binding of finity of T4 to milk was lower than that to serum protein, on which 8-anilino-1-naphthalene sulfonic acid showed no remarkable effect. In spite of the high sensitivity of 100 pg/tub in T4 assay system, no immunoassayable T4 was detected in all samples with or without ethanol extraction and trypsin hydrolysates of milk. In contrast, T3 was present in a measurable amount in most of the samples, the mean +/- SD value of which was 10 +/- 9 ng/100 ml, and those in colostrum were significantly higher than those in matured milk (P less than 0.01), whereas rT3 was not detectable in 76 samples tested. These results indicate that permeability of thyroid hormones through the mammary gland is different between T4 and T3 as well as in placental transport, and human milk can not be a source of thyroxine supply for the breast-fed infant.  相似文献   

16.
Piperine, the main alkaloid of Piper nigrum fruits, was evaluated for its thyroid hormone and glucose regulatory efficacy in adult male Swiss albino mice. Its daily oral administration (2.50 mg/kg) for 15 days lowered the serum levels of both the thyroid hormones, thyroxin (T (4)) and triiodothyronine (T (3)) as well as glucose concentrations with a concomitant decrease in hepatic 5'D enzyme and glucose-6-phospatase (G-6-Pase) activity. However, no significant alterations were observed in animals treated with 0.25 mg/kg of piperine in any of the activities studied except an inhibition in serum T (3) concentration. The decrease in T (4), T (3) concentrations and in G-6-Pase were comparable to that of a standard antithyroid drug, Proylthiouracil (PTU). The hepatic lipid-peroxidation (LPO) and the activity of endogenous antioxidants, superoxide dismutase (SOD), and catalase (CAT) were not significantly altered in either of the doses. It appears that the action of P. nigrum on thyroid functions is mediated through its active alkaloid, piperine. We also suggest that a higher dose of piperine may inhibit thyroid function and serum glucose concentration in euthyroid individuals.  相似文献   

17.
Changes in the pituitary-thyroid axis in patients with Hashimoto's thyroiditis following withdrawal of thyroid suppressive therapy were analyzed. The group of patients with thyroid adenoma served as control (group I). Patients with Hashimoto's thyroiditis were divided into 2 groups on the basis of serum TSH levels 8 weeks after discontinuing the exogenous thyroid hormone (group II, less than 10 microunits/ml; group III, more than 10 microunits/ml). During treatment with L-T4(200 micrograms/day) or L-T3(50 micrograms/day), there was no significant difference in serum T4-I and T3 levels among the three groups. Following L-T4 withdrawal, basal serum TSH levels were higher at 2 to 8 weeks in groups II and III than in group I. Serum TSH response to TRH was greater at 4 to 8 weeks in groups II and III than in group I. Following L-T3 withdrawal, basal serum TSH levels were higher at 1 and 2 weeks in group II than in group I, while those of group III were consistently higher during the study. Higher TSH responses to TRH were observed at 1 to 8 weeks in groups II and III. Neither basal nor TRH-induced prolactin (PRL) secretion differed significantly among the three groups. We have demonstrated that pituitary TSH secretion in patients with Hashimoto's thyroiditis is affected more by withdrawal of thyroid hormone therapy than in patients with thyroid adenoma. In addition, the present findings suggest a difference between the sensitivity of thyrotrophs and lactotrophs in Hashimoto's thyroiditis after prolonged thyroid therapy is discontinued.  相似文献   

18.
In the blood of intact dogs, insulin increases the labelled thyroid hormones (PBI) by about 30% and doubles the T3 level. In athyreotic insulin-administered dogs, the circulating T4 and T3 remain at more or less unvarying values, the plasma disappearance slope of radiothyroxine is not altered. Such data suggest that without the thyroid gland, insulin has no action on the level of the blood thyroid hormones.  相似文献   

19.
Several parameters of thyroid function were studied in 112 non-ketoacidotic youngsters with insulin-dependent diabetes mellitus (IDDM). Levels of thyroxine (T4), reverse triiodothyronine (rT3), thyroxine-binding globulin (TBG) and T3 were lower than in controls, whereas FT4, and FT3 were normal. T4 levels in IDDM patients were positively related to T3, rT3 and TBG, and inversely related to haemoglobin A1 (HbA1). However, only 4 patients showed biochemical hypothyroidism (T4 less than 5 micrograms/100 ml), whereas their FT4, FT3 and thyroid-stimulating hormone (TSH) levels were normal. Concurrent variations of T3 and rT3 levels were found in IDDM patients; thus, their T3/rT3 ratios were stable or higher than in controls, indicating that peripheral deiodination of T4 is preferentially oriented to production of rT3 only during ketoacidosis. Although changes in thyroid function may reflect the degree of metabolic control of diabetes in a large population, the clinical usefulness of serum thyroid hormone measurements in an individual case still appears to be limited.  相似文献   

20.
Transport of thyroid hormone across the cell membrane is required for its action and metabolism. Recently, a T-type amino acid transporter was cloned which transports aromatic amino acids but not iodothyronines. This transporter belongs to the monocarboxylate transporter (MCT) family and is most homologous with MCT8 (SLC16A2). Therefore, we cloned rat MCT8 and tested it for thyroid hormone transport in Xenopus laevis oocytes. Oocytes were injected with rat MCT8 cRNA, and after 3 days immunofluorescence microscopy demonstrated expression of the protein at the plasma membrane. MCT8 cRNA induced an approximately 10-fold increase in uptake of 10 nM 125I-labeled thyroxine (T4), 3,3',5-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3) and 3,3'-diiodothyronine. Because of the rapid uptake of the ligands, transport was only linear with time for <4 min. MCT8 did not transport Leu, Phe, Trp, or Tyr. [125I]T4 transport was strongly inhibited by L-T4, D-T4, L-T3, D-T3, 3,3',5-triiodothyroacetic acid, N-bromoacetyl-T3, and bromosulfophthalein. T3 transport was less affected by these inhibitors. Iodothyronine uptake in uninjected oocytes was reduced by albumin, but the stimulation induced by MCT8 was markedly increased. Saturation analysis provided apparent Km values of 2-5 microM for T4, T3, and rT3. Immunohistochemistry showed high expression in liver, kidney, brain, and heart. In conclusion, we have identified MCT8 as a very active and specific thyroid hormone transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号