首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Yeast is an excellent model system of eukaryotes for the study of molecular mechanisms of ATP-binding cassette transporters. Pdr5 protein is a yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Here, we described a novel drug screening system designated to detect compounds that inhibit the function of Pdr5. An indicator strain with increased drug sensitivity was constructed with an ergosterol-deficient background (delta syr1/erg3 null mutation). The sensitivity of the indicator strain (delta syr1/erg3 delta pdr5 delta snq2) to the Pdr5 substrates, cycloheximide and cerulenin, was increased 16-fold and 4-fold against wild type, respectively. The screening system is mainly based on the growth inhibition of the PDR5-overexpressed indicator strain with the combination of a sample and cycloheximide or cerulenin. The effect of an mdr inhibitor, FK506 on the screening system was clearly detected even at a low concentration (approximately 0.5 microg/ml). In addition, accumulation of rhodamine 6G in the cells was detected as a result of Pdr5 inhibition by FK506. These results indicated that the screening system is useful for a sensitive screening of Pdr5-specific inhibitors with low toxicity.  相似文献   

2.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

3.
The yeast Pdr5p transporter is a 160 kDa protein that effluxes a large variety of xenobiotic compounds. In this study, we characterize its ATPase activity and demonstrate that it has biochemical features reminiscent of those of other ATP-binding cassette multidrug transporters: a relatively high Km for ATP (1.9 mM), inhibition by orthovanadate, and the ability to specifically bind an azidoATP analogue at the nucleotide-binding domains. Pdr5p-specific ATPase activity shows complete, concentration-dependent inhibition by clotrimazole, which is also known to be a potent transport substrate. Our results indicate, however, that this inhibition is noncompetitive and caused by the interaction of clotrimazole with the transporter at a site that is distinct from the ATP-binding domains. Curiously, Pdr5p-mediated transport of clotrimazole continues at intracellular concentrations of substrate that should eliminate all ATPase activity. Significantly, however, we observed that the Pdr5p has GTPase and UTPase activities that are relatively resistant to clotrimazole. Furthermore, the Km(GTPase) roughly matches the intracellular concentrations of the nucleotide reported for yeast. Using purified plasma membrane vesicles, we demonstrate that Pdr5p can use GTP to fuel substrate transport. We propose that Pdr5p increases its multidrug transport substrate specificity by using more than one nucleotide as an energy source.  相似文献   

4.
5.
A subset of the family of ATP-binding cassette (ABC) transporters has been in focus owing to their involvement in conferring multidrug resistance in cancer cells and among immune compromised individuals. Saccharomyces cerevisiae is protected against xenobiotics by similar machineries that are part of the pleitropic drug resistance (PDR) network. The ABC transporter Pdr5 is an important member of this PDR network in yeast and is involved in cellular detoxification by the efflux of a wide variety of drugs and substrates. In this review, we focus on the aspects of detergent effects and the degeneracy in conserved sequences that is observed in the nucleotide binding domains of Pdr5 and discuss their functional relevance.  相似文献   

6.
7.
We have previously shown that a S1360F mutation in transmembrane domain 10 (TMD10) of the Pdr5p ABC transporter modulates substrate specificity and simultaneously leads to a loss of FK506 inhibition. In this study, we have constructed and characterized the S1360F/A/T and T1364F/A/S mutations located in the hydrophilic face of the amphipatic Pdr5p TMD10. A T1364F mutation leads to a reduction in Pdr5p-mediated azole and rhodamine 6G resistance. Like S1360F, the T1364F and T1364A mutants were nearly non-responsive to FK506 inhibition. Most remarkably, however, the S1360A mutation increases FK506 inhibitor susceptibility, because Pdr5p-S1360A is hypersensitive to FK506 inhibition when compared with either wild-type Pdr5p or the non-responsive S1360F variant. Hence, the Pdr5p TMD10 determines both azole substrate specificity and susceptibility to reversal agents. This is the first demonstration of a eukaryotic ABC transporter where a single residue change causes either a loss or a gain in inhibitor susceptibility, depending on the nature of the mutational change. These results have important implications for the design of efficient reversal agents that could be used to overcome multidrug resistance mediated by ABC transporter overexpression.  相似文献   

8.
9.
As a mammalian p-glycoprotein homolog, Pdr5p is a major ATP-binding cassette transporter for cellular detoxification in the yeast Saccharomyces cerevisiae. In this study, two novel loss-of-function mutations located adjacent to the ends of the predicted transmembrane helices of Pdr5p were identified. C793F and S1230L mutations considerably impaired the transport activity of Pdr5p without affecting the ATPase activity and the expression level of the protein. Our results demonstrate that the size of residue 793 and the hydrophobicity of residue 1230 are important for Pdr5p efflux function. It reveals that amino acid residues located near the end of transmembrane helix play an important role in drug efflux of Pdr5p. Molecular docking results further suggest that these two single mutations might have disturbed interactions between the drugs and Pdr5p, preventing the drugs from approaching the intracellular or extracellular portal and subsequently from being exported by Pdr5p.  相似文献   

10.
Guo X  Li J  Wang T  Liu Z  Chen X  Li Y  Gu Z  Mao X  Guan W  Li Y 《PloS one》2012,7(1):e29520
Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constructed by segmental replacement of homologous BY4741 PDR5 fragments. Functions of PDR5 chimeras were evaluated by fluconazole and cycloheximide resistance assays. Their expression, ATPase activity, and efflux efficiency for other substrates were also analyzed. Using multiple lines of evidence, we show that an alanine-to-methionine mutation at position 1352 located in the predicted short intracellular loop 4 significantly contributes to the observed transport deficiency. The degree of impairment is likely correlated to the size of the mutant residue.  相似文献   

11.
12.
Pleotropic drug resistant protein 5 (Pdr5p) is a plasma membrane ATP-binding cassette (ABC) transporter and the major drug efflux pump in Saccharomyces cerevisiae. The Pdr5p family of fungal transporters possesses a number of structural features significantly different from other modeled or crystallized ABC transporters, which include a reverse topology, an atypical ATP-binding site, a very low sequence similarity in the transmembrane section and long linkers between domains. These features present a considerable hurdle in molecular modeling studies of these important transporters. Here, we report the creation of an atomic model of Pdr5p based on a combination of homology modeling and ab initio methods, incorporating information from consensus transmembrane segment prediction, residue lipophilicity, and sequence entropy. Reported mutations in the transmembrane substrate-binding pocket that altered drug-resistance were used to validate the model, and one mutation that changed the communication pattern between transmembrane and nucleotide-binding domains was used in model improvement. The predictive power of the model was demonstrated experimentally by the increased sensitivity of yeast mutants to clotrimazole having alanine substitutions for Thr1213 and Gln1253, which are predicted to be in the substrate-binding pocket, without reducing the amount of Pdr5p in the plasma membrane. The quality and reliability of our model are discussed in the context of various approaches used for modeling different parts of the structure.  相似文献   

13.
14.
ATP-binding cassette multidrug efflux pumps transport a wide range of substrates. Current models suggest that a drug binds relatively tightly to a transport site in the transmembrane domains when the protein is in the closed inward facing conformation. Upon binding of ATP, the transporter can switch to an outward facing (drug off or drug releasing) structure of lower affinity. ATP hydrolysis is critically important for remodeling the drug-binding site to facilitate drug release and to reset the transporter for a new transport cycle. We characterized the novel phenotype of an S1368A mutant that lies in the putative drug-binding pocket of the yeast multidrug transporter Pdr5. This substitution created broad, severe drug hypersensitivity, although drug binding, ATP hydrolysis, and intradomain signaling were indistinguishable from the wild-type control. Several different rhodamine 6G efflux and accumulation assays yielded evidence consistent with the possibility that Ser-1368 prevents reentry of the excluded drug.  相似文献   

15.
16.
ATP-binding cassette (ABC) transporters play important roles in drug efflux, but some may also function in cellular detoxification. The Pdr15p ABC protein is the closest homologue of the multidrug efflux transporter Pdr5p, which mediates pleiotropic drug resistance to hundreds of unrelated compounds. In this study, we show that the plasma membrane protein Pdr15p displays limited drug transport capacity, mediating chloramphenicol and detergent tolerance. Interestingly, Pdr15p becomes most abundant when cells exit the exponential growth phase, whereas its closest homologue, Pdr5p, disappears after exponential growth. Furthermore, in contrast to Pdr5p, Pdr15p is strongly induced by various stress conditions including heat shock, low pH, weak acids, or high osmolarity. PDR15 induction bypasses the Pdr1p/Pdr3p regulators but requires the general stress regulator Msn2p, which directly decorates the stress response elements in the PDR15 promoter. Remarkably, however, Pdr15p induction bypasses upstream components of the high osmolarity glycerol (HOG) pathway including the Hog1p and Pbs2p kinases as well as the dedicated HOG cell surface sensors. Our data provide evidence for a novel upstream branch of the general stress response pathway activating Msn2p. In addition, the results demonstrate a cross-talk between stress response and the pleiotropic drug resistance network.  相似文献   

17.
18.
We have previously shown that the synthetic nonsteroidal ecdysone agonist tebufenozide (RH-5992) is actively excluded by resistant cells of insects. To identify the transporter that could be involved in the efflux of RH-5992, the role of three ATP binding cassette transporters, Pdr5p, Snq2p and Ycf1p, has been studied using transporter-deletion mutants of yeast Saccharomyces cerevisiae. PDR5 (pleiotropic drug resistance 5) deletion mutants (Deltapdr5 and Deltapdr5Deltasnq2) retained significantly higher levels of 14C-radiolabeled RH-5992 within the cells when compared to wild-type strain or single deletion mutants of SNQ2 (Deltasnq2) and YCF1 (Deltaycf1). Introduction of an expression vector containing the PDR5 gene into the PDR5 single deletion mutant reversed the effect, resulting in the active exclusion of [14C]RH-5992 from these cells as efficiently as the wild-type cells. These results demonstrated that the ABC transporter Pdr5p but not Snq2p or Ycf1p was responsible for the active exclusion of [14C]RH-5992 in yeast. This exclusion was temperature-dependent and was blocked by the ATPase inhibitors oligomycin and vanadate, indicating that the efflux was an active process. The mutants with the PDR5 deletion can also selectively accumulate [14C]RH-0345 and [14C]RH-2485, but not [14C]RH-5849, indicating that these three compounds share the same transporter Pdr5p for efflux.  相似文献   

19.
The pleiotropic drug resistance protein, Pdr5p, is an ATP-binding cassette transporter of the plasma membrane of Saccharomyces cerevisiae. Overexpression of Pdr5p results in increased cell resistance to a variety of cytotoxic compounds, a phenotype reminiscent of the multiple drug resistance seen in tumor cells. Pdr5p and two other yeast ATP-binding cassette transporters, Snq2p and Yor1p, were found to be phosphorylated on serine residues in vitro. Mutations in the plasma membrane-bound casein kinase I isoforms, Yck1p and Yck2p, abolished Pdr5p phosphorylation and modified the multiple drug resistance profile. We showed Pdr5p to be ubiquitylated when overexpressed. However, instability of Pdr5p was only seen in Yck1p- and Yck2p-deficient strains, in which it was degraded in the vacuole via a Pep4p-dependent mechanism. Our results suggest that casein kinase I activity is required for membrane trafficking of Pdr5p to the cell surface. In the absence of functional Yck1p and Yck2p, Pdr5p is transported to the vacuole for degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号