首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.  相似文献   

2.
Several cardiovascular disorders, including atherosclerosis and tolerance to the antianginal drug nitroglycerin (GTN), may be associated with the generation of superoxide anions, which react with nitric oxide (NO) to yield peroxynitrite. According to a widely held view, oxidation of tetrahydrobiopterin (BH4) by peroxynitrite causes uncoupling of endothelial NO synthase (eNOS), resulting in reduced NO bioavailability and endothelial dysfunction under conditions of oxidative stress. In this study we determined the levels of reduced biopterins and endothelial function in cultured cells exposed to peroxynitrite and GTN as well as in blood vessels isolated from GTN-tolerant guinea pigs and rats. BH4 was rapidly oxidized by peroxynitrite and 3-morpholino sydnonimine (SIN-1) in buffer, but this was prevented by glutathione and not observed in endothelial cells exposed to SIN-1 or GTN. Prolonged treatment of the cells with 0.1 mM GTN caused slow NG-nitro-l-arginine-sensitive formation of reactive oxygen species without affecting eNOS activity. Endothelial function and BH4/BH2 levels were identical in blood vessels of control and GTN-tolerant animals. Our results suggest that peroxynitrite-triggered BH4 oxidation does not occur in endothelial cells or GTN-exposed blood vessels. GTN seems to trigger minor eNOS uncoupling that is unrelated to BH4 depletion and without observable consequence on eNOS function.  相似文献   

3.
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.  相似文献   

4.

Background

The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation.

Methods and Results

Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species.

Conclusions

The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.  相似文献   

5.
Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4) is a required cofactor for nitric oxide (NO) production by endothelial NO synthase (eNOS). Hyperglycemia (HG) leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs) were co-cultured with endothelial cells (ECs) and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor) or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis) in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.  相似文献   

6.
Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Depending on BH4 availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH4/BH2 ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH4 deficiency. The primary three biopterin metabolites (BH4, BH2 and B0 [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH4 was decreased (median 0.16 ¼mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH2 was increased in SM (median 0.91 ¼mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH4/BH2 ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH4/BH2 ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH2 in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.  相似文献   

7.
The acute-phase protein serum amyloid A (SAA) is elevated during inflammation and may be deposited in atheroma where it promotes atherosclerosis. We investigated the proatherogenic effects of SAA on the vascular endothelium and their regulation by high-density lipoprotein (HDL). Exposure of human aortic endothelial cells (HAEC) to SAA (0.25-25 μg/ml) decreased nitric oxide (NO) synthesis/bioavailability, although the endothelial NO synthase monomer-to-dimer ratio was unaffected. SAA (10 μg/ml) stimulated a Ca2+ influx linked to apocynin-sensitive superoxide radical anion (O2•−) production. Gene expression for arginase-1, nuclear factor κB (NF-κB), interleukin-8, and tissue factor (TF) increased within 4 h of SAA stimulation. Enzymatically active Arg-1/2 was detected in HAEC cultured with SAA for 24 h. Therefore, in addition to modulating NO bioavailability by stimulating O2•− production in the endothelium, SAA modulated vascular l-Arg bioavailability. SAA also diminished relaxation of preconstricted aortic rings induced by acetylcholine, and added superoxide dismutase restored the vascular response. Preincubation of HAEC with HDL (100 or 200, but not 50, μg/ml) before (not after) SAA treatment ameliorated the Ca2+ influx and O2•− production; decreased TF, NF-κB, and Arg-1 gene expression; and preserved overall vascular function. Thus, SAA may promote endothelial dysfunction by modulating NO and l-Arg bioavailability, and HDL pretreatment may be protective. The relative HDL to SAA concentrations may regulate the proatherogenic properties of SAA on the vascular endothelium.  相似文献   

8.
Endothelium-derived nitric oxide (NO) produced from endothelial NO-synthase (eNOS) is one of the most important vasoprotective molecules in cardiovascular physiology. Dysfunctional eNOS such as uncoupling of eNOS leads to decrease in NO bioavailability and increase in superoxide anion (O2.−) production, and in turn promotes cardiovascular diseases. Therefore, appropriate measurement of NO and O2.− levels in the endothelial cells are pivotal for research on cardiovascular diseases and complications. Because of the extremely labile nature of NO and O2.−, it is difficult to measure NO and O2.− directly in a blood vessel. Numerous methods have been developed to measure NO and O2.− production. It is, however, either insensitive, or non-specific, or technically demanding and requires special equipment. Here we describe an adaption of the fluorescence dye method for en face simultaneous detection and visualization of intracellular NO and O2.− using the cell permeable diaminofluorescein-2 diacetate (DAF-2DA) and dihydroethidium (DHE), respectively, in intact aortas of an obesity mouse model induced by high-fat-diet feeding. We could demonstrate decreased intracellular NO and enhanced O2.− levels in the freshly isolated intact aortas of obesity mouse as compared to the control lean mouse. We demonstrate that this method is an easy technique for direct detection and visualization of NO and O2.− in the intact blood vessels and can be widely applied for investigation of endothelial (dys)function under (physio)pathological conditions.  相似文献   

9.
Inducible NOS (iNOS) is induced in diseases associated with inflammation and oxidative stress, and questions remain regarding its regulation. We demonstrate that reactive oxygen/nitrogen species (ROS/RNS) dose-dependently regulate iNOS function. Tetrahydrobiopterin (BH4)-replete iNOS was exposed to increasing concentrations of ROS/RNS and activity was measured with and without subsequent BH4 addition. Peroxynitrite (ONOO) produced the greatest change in NO generation rate, ∼95% decrease, and BH4 only partially restored this loss of activity. Superoxide () greatly decreased NO generation, however, BH4 addition restored this activity. Hydroxyl radical (OH) mildly decreases NO generation in a BH4-dependent manner. iNOS was resistant to H2O2 with only slightly decreased NO generation with up to millimolar concentrations. In contrast to the inhibition of NO generation, ROS enhanced production from iNOS, while ONOO had the opposite effect. Thus, ROS promote reversible iNOS uncoupling, while ONOO induces irreversible enzyme inactivation and decreases both NO and production.  相似文献   

10.
Reactive nitrogen/oxygen species (ROS/RNS) at low concentrations play an important role in regulating cell function, signaling, and immune response but in unregulated concentrations are detrimental to cell viability1, 2. While living systems have evolved with endogenous and dietary antioxidant defense mechanisms to regulate ROS generation, ROS are produced continuously as natural by-products of normal metabolism of oxygen and can cause oxidative damage to biomolecules resulting in loss of protein function, DNA cleavage, or lipid peroxidation3, and ultimately to oxidative stress leading to cell injury or death4. Superoxide radical anion (O2•-) is the major precursor of some of the most highly oxidizing species known to exist in biological systems such as peroxynitrite and hydroxyl radical. The generation of O2•- signals the first sign of oxidative burst, and therefore, its detection and/or sequestration in biological systems is important. In this demonstration, O2•- was generated from polymorphonuclear neutrophils (PMNs). Through chemotactic stimulation with phorbol-12-myristate-13-acetate (PMA), PMN generates O2•- via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase5. Nitric oxide (NO) synthase which comes in three isoforms, as inducible-, neuronal- and endothelial-NOS, or iNOS, nNOS or eNOS, respectively, catalyzes the conversion of L- arginine to L-citrulline, using NADPH to produce NO6. Here, we generated NO from endothelial cells. Under oxidative stress conditions, eNOS for example can switch from producing NO to O2•- in a process called uncoupling, which is believed to be caused by oxidation of heme7 or the co-factor, tetrahydrobiopterin (BH4)8.There are only few reliable methods for the detection of free radicals in biological systems but are limited by specificity and sensitivity. Spin trapping is commonly used for the identification of free radicals and involves the addition reaction of a radical to a spin trap forming a persistent spin adduct which can be detected by electron paramagnetic resonance (EPR) spectroscopy. The various radical adducts exhibit distinctive spectrum which can be used to identify the radicals being generated and can provide a wealth of information about the nature and kinetics of radical production9.The cyclic nitrones, 5,5-dimethyl-pyrroline-N-oxide, DMPO10, the phosphoryl-substituted DEPMPO11, and the ester-substituted, EMPO12 and BMPO13, have been widely employed as spin traps--the latter spin traps exhibiting longer half-lives for O2•- adduct. Iron (II)-N-methyl-D-glucamine dithiocarbamate, Fe(MGD)2 is commonly used to trap NO due to high rate of adduct formation and the high stability of the spin adduct14.  相似文献   

11.
Superoxide (O2•−) is implicated in inflammatory states including arteriosclerosis and ischemia-reperfusion injury. Cobalamin (Cbl) supplementation is beneficial for treating many inflammatory diseases and also provides protection in oxidative-stress-associated pathologies. Reduced Cbl reacts with O2•− at rates approaching that of superoxide dismutase (SOD), suggesting a plausible mechanism for its anti-inflammatory properties. Elevated homocysteine (Hcy) is an independent risk factor for cardiovascular disease and endothelial dysfunction. Hcy increases O2•− levels in human aortic endothelial cells (HAEC). Here, we explore the protective effects of Cbl in HAEC exposed to various O2•− sources, including increased Hcy levels. Hcy increased O2•− levels (1.6-fold) in HAEC, concomitant with a 20% reduction in cell viability and a 1.5-fold increase in apoptotic death. Pretreatment of HAEC with physiologically relevant concentrations of cyanocobalamin (CNCbl) (10-50 nM) prevented Hcy-induced increases in O2•− and cell death. CNCbl inhibited both Hcy and rotenone-induced mitochondrial O2•− production. Similarly, HAEC challenged with paraquat showed a 1.5-fold increase in O2•− levels and a 30% decrease in cell viability, both of which were prevented with CNCbl pretreatment. CNCbl also attenuated elevated O2•− levels after exposure of cells to a Cu/Zn-SOD inhibitor. Our data suggest that Cbl acts as an efficient intracellular O2•− scavenger.  相似文献   

12.
Uncoupled endothelial nitric oxide synthase (eNOS) produces O2? instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2? production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2? burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2? releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.  相似文献   

13.
A close relationship between oxidative stress, endothelial dysfunction, and hypoadiponectinemia has been observed. The present study was performed to investigate how glutathione depletion via buthionine sulfoximine (BSO) administration affects endothelial function and adiponectin levels in rats. Acetylcholine (Ach)-induced vasodilation was significantly enhanced in BSO-treated rats, compared with control rats. This was completely abolished by L-NAME, and Ach-induced vasodilation was not observed in the aorta without endothelium. These results suggest that Ach-induced hyper-relaxation of the aorta in BSO-treated rats is completely dependent on the presence of endothelium and mediated by changes in eNOS activity. Catalase significantly inhibited this relaxation to Ach and no effect of catalase on sodium nitroprusside-induced relaxation of the aorta without endothelium was observed in BSO-treated rats. Thus, hyper-relaxation of the aorta in BSO-treated rats is likely caused by H2O2 in addition to NO produced by the endothelium via an eNOS-dependent mechanism. Hypoadiponectinemia and decreased levels of adiponectin mRNA in adipose tissue were observed in BSO-treated rats. Protein expression of eNOS and SODs (SOD-1 and SOD-2) in the aorta was increased and plasma NOx levels were decreased in BSO-treated rats. Our results suggest that oxidative stress induced by BSO causes eNOS uncoupling and hyper-relaxation by producing H2O2, and that BSO-induced oxidative stress causes hypoadiponectinemia, probably by increasing H2O2 production in adipose tissue.  相似文献   

14.
Vascular tone is controlled by the L-arginine/nitric oxide (NO) pathway, and NO bioavailability is strongly affected by hyperglycaemia-induced oxidative stress. Insulin leads to high expression and activity of human cationic amino acid transporter 1 (hCAT-1), NO synthesis and vasodilation; thus, a protective role of insulin on high D-glucose–alterations in endothelial function is likely. Vascular reactivity to U46619 (thromboxane A2 mimetic) and calcitonin gene related peptide (CGRP) was measured in KCl preconstricted human umbilical vein rings (wire myography) incubated in normal (5 mmol/L) or high (25 mmol/L) D-glucose. hCAT-1, endothelial NO synthase (eNOS), 42 and 44 kDa mitogen-activated protein kinases (p42/44mapk), protein kinase B/Akt (Akt) expression and activity were determined by western blotting and qRT-PCR, tetrahydrobiopterin (BH4) level was determined by HPLC, and L-arginine transport (0–1000 μmol/L) was measured in response to 5–25 mmol/L D-glucose (0–36 hours) in passage 2 human umbilical vein endothelial cells (HUVECs). Assays were in the absence or presence of insulin and/or apocynin (nicotinamide adenine dinucleotide phosphate-oxidase [NADPH oxidase] inhibitor), tempol or Mn(III)TMPyP (SOD mimetics). High D-glucose increased hCAT-1 expression and activity, which was biphasic (peaks: 6 and 24 hours of incubation). High D-glucose–increased maximal transport velocity was blocked by insulin and correlated with lower hCAT-1 expression and SLC7A1 gene promoter activity. High D-glucose–increased transport parallels higher reactive oxygen species (ROS) and superoxide anion (O2 •–) generation, and increased U46619-contraction and reduced CGRP-dilation of vein rings. Insulin and apocynin attenuate ROS and O2 •– generation, and restored vascular reactivity to U46619 and CGRP. Insulin, but not apocynin or tempol reversed high D-glucose–increased NO synthesis; however, tempol and Mn(III)TMPyP reversed the high D-glucose–reduced BH4 level. Insulin and tempol blocked the high D-glucose–increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2 •–/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia.  相似文献   

15.
Uncoupling of NO production from NADPH oxidation by endothelial nitric-oxide synthase (eNOS) is enhanced in hyperglycemic endothelium, potentially due to dissociation of heat shock proteins 90 (Hsp90), and cellular glucose homeostasis is enhanced by a ROS-induced positive feed back mechanism. In this study we investigated how such an uncoupling impacts oxygen metabolism and how the oxidative phosphorylation can be preserved by heat shock (42 °C for 2 h, hyperthermia) in bovine aortic endothelial cells. Normal and heat-shocked bovine aortic endothelial cells were exposed to normoglycemia (NG, 5.0 mm) or hyperglycemia (30 mm). With hyperglycemia treatment, O2 consumption rate was reduced (from VO2max = 7.51 ± 0.54 to 2.35 ± 0.27 mm Hg/min/106 cells), whereas in heat-shocked cells, O2 consumption rate remained unaltered (8.19 ± 1.01 mm Hg/min/10 × 106 cells). Heat shock was found to enhance Hsp90/endothelial NOS interactions and produce higher NO. Moreover, ROS generation in the hyperglycemic condition was also reduced in heat-shocked cells. Interestingly, glucose uptake was reduced in heat-shocked cells as a result of decrease in Glut-1 protein level. Glucose phosphate dehydrogenase activity that gives rise to NADPH generation was increased by hyperthermia, and mitochondrial oxidative metabolism was preserved. In conclusion, the present study provides a novel mechanism wherein the reduced oxidative stress in heat-shocked hyperglycemic cells down-regulates Glut-1 and glucose uptake, and fine-tuning of this pathway may be a potential approach to use for therapeutic benefit of diabetes mellitus.  相似文献   

16.
Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability.In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced, and oxidative stress is increased, resulting in endothelial dysfunction. It has become apparent that enzymatic “coupling” of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4)2 plays a key role in maintaining endothelial function. Indeed, the balance between NO and superoxide production by eNOS appears to be determined by the availability of BH4 versus the abundance of 7,8-dihydrobiopterin (BH2, that is inactive for NOS cofactor function and may compete with BH4 for NOS binding (1). Intracellular biopterin levels are regulated principally by the activity of the de novo biosynthetic pathway (Fig. 1). Guanosine triphosphate cyclohydrolase I (GTPCH; EC 3.5.4.16) catalyzes the formation of dihydroneopterin triphosphate from GTP, and BH4 is generated by two further steps through 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. GTPCH appears to be the rate-limiting enzyme in BH4 biosynthesis, and overexpression of GTPCH is sufficient to augment BH4 levels in cultured endothelial cells (2). Electron paramagnetic resonance spectroscopy studies have shown that BH4 both stabilizes and donates electrons to the ferrous-dioxygen complex in the oxygenase domain, as the initiating step of l-arginine oxidation (35). In this reaction BH4 forms the protonated trihydrobiopterin cation radical, which is subsequently reduced by electron transfer from NOS flavins. When BH4 availability is limiting, electron transfer from NOS flavins becomes uncoupled from l-arginine oxidation, eNOS generates superoxide rather than NO, BH4 becomes oxidized to catalytically incompetent BH2, and a futile feed-forward cascade of BH4 destruction proceeds (1). Recent studies reveal that BH4 and BH2 bind eNOS with equal affinity and that BH2 can efficiently replace eNOS-bound BH4, resulting in eNOS uncoupling (6). Indeed, we have previously shown that the relative abundance of eNOS versus BH4 together with the intracellular BH4:BH2 ratio, rather than absolute concentrations of BH4, are the key determinants of eNOS uncoupling (7), a hypothesis supported by a recent publication where BH2 levels are elevated after exposure of bovine aortic endothelial cells to DHFR-specific siRNA (8). Thus, mechanisms that regulate the BH4:BH2 ratio independently of overall biopterin levels may play an equally important role in regulating eNOS coupling as the well established role of GTCPH, which regulates de novo BH4 biosynthesis. In addition to key roles in folate metabolism, dihydrofolate reductase (DHFR; EC 1.5.1.3) can reduce BH2, thus regenerating BH4 (9, 10). It is, therefore, likely that net BH4 bioavailability within the endothelium reflects the balance between de novo BH4 synthesis, loss of BH4 by oxidation to BH2, and the regeneration of BH4 by DHFR. In human liver extracts DHFR has been shown to reduce BH2 back to BH4 as part of the salvage pathway for biopterin synthesis (11). However, the role of this pathway and the extent to which it regulates intracellular BH4 levels in vivo remains unknown. Recent work by Chalupsky and Cai (2) investigated the functionality of endothelial DHFR in cultured bovine aortic endothelial cells. Exposure to angiotensin II down-regulated DHFR expression, decreased BH4 levels, and increased eNOS uncoupling, which was restored by overexpression of DHFR (2). A recent study also suggests that perturbation of BH4 metabolism differentially affects eNOS phosphorylation sites. Knockdown of DHFR by siRNA inhibits vascular endothelial growth factor-induced dephosphorylation of eNOS at Ser-116, an effect that is completely recovered by the addition of exogenous BH4 (8). However, the requirement for DHFR in regulating intracellular BH4 homeostasis and the quantitative relationships that relate BH4 de novo synthesis versus BH4 recycling to eNOS coupling remain uncertain. Accordingly, we sought to address these questions using both pharmacologic and genetic manipulation of DHFR activity and related these interventions to effects on eNOS coupling. We manipulated DHFR in both endothelial cells and in novel cell lines that stably express an eNOS-GFP fusion protein and where expression of human GTPCH can be regulated by doxycycline in order to test the effects of variations in intracellular BH4 biosynthesis (7). We report that although GTPCH is the key regulator of the total amount of intracellular biopterins, DHFR is critical to eNOS function by determining BH4:BH2 ratio and, thus, in maintaining eNOS coupling. In particular, DHFR is important in preventing “self-propagated” eNOS uncoupling in conditions of low total biopterin levels, when eNOS-dependent oxidation of BH4 that would further exacerbate eNOS uncoupling can be rescued by DHFR.Open in a separate windowFIGURE 1.Schematic representation of the BH4 recycling pathway and eNOS coupling. BH4 is synthesized from GTP via a series of reactions involving GTPCH, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase (SR) and DHFR. DHFR activity can be inhibited by MTX. GFRP, GTP cyclohydrolase feedback regulatory protein. PTPS, 6-pyruvoyl-tetrahydropterin synthase.  相似文献   

17.
Endothelial nitric-oxide synthase (eNOS) uncoupling and increased inducible NOS (iNOS) activity amplify vascular oxidative stress. The role of inflammatory myelomonocytic cells as mediators of these processes and their impact on tetrahydrobiopterin availability and function have not yet been defined. Angiotensin II (ATII, 1 mg/kg/day for 7 days) increased Ly6Chigh and CD11b+/iNOShigh leukocytes and up-regulated levels of eNOS glutathionylation in aortas of C57BL/6 mice. Vascular iNOS-dependent NO formation was increased, whereas eNOS-dependent NO formation was decreased in aortas of ATII-infused mice as assessed by electron paramagnetic resonance (EPR) spectroscopy. Diphtheria toxin-mediated ablation of lysozyme M-positive (LysM+) monocytes in ATII-infused LysMiDTR transgenic mice prevented eNOS glutathionylation and eNOS-derived Nω-nitro-l-arginine methyl ester-sensitive superoxide formation in the endothelial layer. ATII increased vascular guanosine triphosphate cyclohydrolase I expression and biopterin synthesis in parallel, which was reduced in monocyte-depleted LysMiDTR mice. Vascular tetrahydrobiopterin was increased by ATII infusion but was even higher in monocyte-depleted ATII-infused mice, which was paralleled by a strong up-regulation of dihydrofolate reductase expression. EPR spectroscopy revealed that both vascular iNOS- and eNOS-dependent NO formation were normalized in ATII-infused mice following monocyte depletion. Additionally, deletion as well as pharmacologic inhibition of iNOS prevented ATII-induced endothelial dysfunction. In summary, ATII induces an inflammatory cell-dependent increase of iNOS, guanosine triphosphate cyclohydrolase I, tetrahydrobiopterin, NO formation, and nitro-oxidative stress as well as eNOS uncoupling in the vessel wall, which can be prevented by ablation of LysM+ monocytes.  相似文献   

18.
Tetrahydrobiopterin (BH4) is a ubiquitous pteridine metabolite that serves as a NOS cofactor. Recently, we showed that BH4 efficiently inhibits superoxide generation from the heme group at the oxygenase domain of eNOS. This role indicates that BH4 acts as a redox switch in the catalytic mechanism of the enzyme, which may have important consequences in the physiology of the endothelium. Here the mechanism by which BH4 inhibits superoxide release from eNOS and the "uncoupling" effects of oxidized BH4 metabolites are presented. The implications of the disparate actions of fully reduced and oxidized BH 4 metabolites in the control of eNOS biochemistry are discussed in the light of clinical data indicating that BH 4 levels are important in the regulation of superoxide levels and of endothelial reactivity.  相似文献   

19.
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH4 would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH4] and the oxidized metabolites, dihydrobiopterin [BH2] and biopterin [B0]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55–2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups — UM (2.10 [IQR:1.32–3.14];p<0.001), NMC (1.52 [IQR:1.01–2.71];p = 0.002), and HC (1.60 [IQR:1.15–2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89–7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.  相似文献   

20.
Tetrahydrobiopterin (BH4) is a regulator of endothelial nitric oxide synthase (eNOS) activity. Deficient levels result in eNOS uncoupling, with a shift from nitric oxide to superoxide generation. The hph-1 mutant mouse has deficient GTP cyclohydrolase I (GTPCH1) activity, resulting in low BH4 tissue content. The adult hph-1 mouse has pulmonary hypertension, but whether such condition is present from birth is not known. Thus, we evaluated newborn animals’ pulmonary arterial medial thickness, biopterin content (BH4 + BH2), H2O2 and eNOS, right ventricle-to-left ventricle + septum (RV/LV + septum) ratio, near-resistance pulmonary artery agonist-induced force, and endothelium-dependent and -independent relaxation. The lung biopterin content was inversely related to age for both types, but significantly lower in hph-1 mice, compared to wild-type animals. As judged by the RV/LV + septum ratio, newborn hph-1 mice have pulmonary hypertension and, after a 2-week 13% oxygen exposure, the ratios were similar in both types. The pulmonary arterial agonist-induced force was reduced (P < 0.01) in hph-1 animals and no type-dependent difference in endothelium-dependent or -independent vasorelaxation was observed. Compared to wild-type mice, the lung H2O2 content was increased, whereas the eNOS expression was decreased (P < 0.01) in hph-1 animals. The pulmonary arterial medial thickness, a surrogate marker of vascular remodeling, was increased (P < 0.01) in hph-1 compared to wild-type mice. In conclusion, our data suggest that pulmonary hypertension is present from birth in the GTPCH1-deficient mice, not as a result of impaired vasodilation, but secondary to vascular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号