首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.  相似文献   

2.
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. Aim of the study: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O2) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. Conclusions: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.  相似文献   

3.
Endothelin (ET) receptor antagonism protects from ischemia-reperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 microM), the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 100 microM), the combination of bosentan and L-NMMA or the combination of bosentan, L-NMMA, and the NO substrate L-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by L-NMMA, whereas it was restored by L-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 +/- 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 +/- 5% in the vehicle group (P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.  相似文献   

4.
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.  相似文献   

5.
We tested the hypothesis that down-regulated hearts, as observed during low-flow ischemia, adapt better to low O2 supply than non-down-regulated, or hypoxic, hearts. To address the link between down-regulation and endogenous ischemic protection, we compared myocardial tolerance to ischemia and hypoxia of increasing duration. To that end, we exposed buffer-perfused rat hearts to either low-flow ischemia or hypoxia (same O2 shortage) for 20, 40 or 60 min (n = 8/group), followed by reperfusion or reoxygenation (20 min, full O2 supply). At the end of the O2 shortage, the rate·pressure product was less in ischemic than hypoxic hearts (p < 0.0001). The recovery of the rate·pressure product after reperfusion or reoxygenation was not different for t = 20 min, but was better in ischemic than hypoxic hearts for t = 40 and 60 min (p < 0.02 and p < 0.0002, respectively). The end-diastolic pressure remained unchanged during low-flow ischemia (0.024 ± 0.013 mmHg·min–1), but increased significantly during hypoxia (0.334 ± 0.079 mmHg·min–1). We conclude that, while the duration of hypoxia progressively impaired the rate·pressure product and the end-diastolic pressure, hearts were insensitive of the duration of low-flow ischemia, thereby providing evidence that myocardial down-regulation protects hearts from injury. Excessive ATP catabolism during ischemia in non-down-regulated hearts impaired myocardial recovery regardless of vascular, blood-related and neuro-hormonal factors. These observations support the view that protection is mediated by the maintenance of the ATP pool.  相似文献   

6.
High glucose (HG)‐induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co‐transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG‐induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) before determination of senescence‐associated beta‐galactosidase activity, protein level by Western blot and immunofluorescence staining, mRNA by RT‐PCR, nitric oxide (NO) by electron paramagnetic resonance, oxidative stress using dihydroethidium and glucose uptake using 2‐NBD‐glucose. HG increased ECs senescence markers and oxidative stress, down‐regulated eNOS expression and NO formation, and induced the expression of VCAM‐1, tissue factor, and the local angiotensin system, all these effects were prevented by empagliflozin. Empagliflozin and LX‐4211 (dual SGLT1/2 inhibitor) reduced glucose uptake stimulated by HG and H2O2 in ECs. HG increased SGLT1 and 2 protein levels in cultured ECs and native endothelium. Inhibition of the angiotensin system prevented HG‐induced ECs senescence and SGLT1 and 2 expression. Thus, HG‐induced ECs ageing is driven by the local angiotensin system via the redox‐sensitive up‐regulation of SGLT1 and 2, and, in turn, enhanced glucotoxicity.  相似文献   

7.
Endothelial dysfunction is associated with increase in oxidative stress and low NO bioavailability. The endothelial NO synthase (eNOS) uncoupling is considered an important factor in endothelial cell oxidative stress. Under increased oxidative stress, the eNOS cofactor tetrahydrobiopterin (BH4) is oxidized to dihydrobiopterin, which competes with BH4 for binding to eNOS, resulting in eNOS uncoupling and reduction in NO production. The importance of the ratio of BH4 to oxidized biopterins versus absolute levels of total biopterin in determining the extent of eNOS uncoupling remains to be determined. We have developed a computational model to simulate the kinetics of the biochemical pathways of eNOS for both NO and O2•− production to understand the roles of BH4 availability and total biopterin (TBP) concentration in eNOS uncoupling. The downstream reactions of NO, O2•−, ONOO, O2, CO2, and BH4 were also modeled. The model predicted that a lower [BH4]/[TBP] ratio decreased NO production but increased O2•− production from eNOS. The NO and O2•− production rates were independent above 1.5 μM [TBP]. The results indicate that eNOS uncoupling is a result of a decrease in [BH4]/[TBP] ratio, and a supplementation of BH4 might be effective only when the [BH4]/[TBP] ratio increases. The results from this study will help us understand the mechanism of endothelial dysfunction.  相似文献   

8.
Several cardiovascular disorders, including atherosclerosis and tolerance to the antianginal drug nitroglycerin (GTN), may be associated with the generation of superoxide anions, which react with nitric oxide (NO) to yield peroxynitrite. According to a widely held view, oxidation of tetrahydrobiopterin (BH4) by peroxynitrite causes uncoupling of endothelial NO synthase (eNOS), resulting in reduced NO bioavailability and endothelial dysfunction under conditions of oxidative stress. In this study we determined the levels of reduced biopterins and endothelial function in cultured cells exposed to peroxynitrite and GTN as well as in blood vessels isolated from GTN-tolerant guinea pigs and rats. BH4 was rapidly oxidized by peroxynitrite and 3-morpholino sydnonimine (SIN-1) in buffer, but this was prevented by glutathione and not observed in endothelial cells exposed to SIN-1 or GTN. Prolonged treatment of the cells with 0.1 mM GTN caused slow NG-nitro-l-arginine-sensitive formation of reactive oxygen species without affecting eNOS activity. Endothelial function and BH4/BH2 levels were identical in blood vessels of control and GTN-tolerant animals. Our results suggest that peroxynitrite-triggered BH4 oxidation does not occur in endothelial cells or GTN-exposed blood vessels. GTN seems to trigger minor eNOS uncoupling that is unrelated to BH4 depletion and without observable consequence on eNOS function.  相似文献   

9.
The mechanism of flavonol-induced cardioprotection is unclear. We compared the protective actions of a flavonol that inhibits calcium utilization and has antioxidant activity, 3′,4′-dihydroxyflavonol (DiOHF); a flavonol that affects only calcium activity, 4′-OH-3′-OCH3-flavonol (4′-OH-3′-OCH3F); and a water-soluble flavonol with selective antioxidant activity, DiOHF-6-succinamic acid (DiOHF-6-SA), in isolated, perfused rat hearts. Hearts were subjected to global ischemia for 20 min followed by 30 min reperfusion and were treated with vehicle (0.05% DMSO), DiOHF, 4′-OH-3′-OCH3F, or DiOHF-6-SA (all 10 μM, n = 5-8 per group). Flavonols were infused for 10 min before ischemia and during reperfusion. In vehicle-treated hearts, left-ventricular (LV) + dP/dt was reduced by 60% at the end of reperfusion compared to the preischemic level. Lactate dehydrogenase (LDH) release was elevated and endothelial NO synthase (eNOS) expression was lower in vehicle-treated hearts compared to shams. In comparison, DiOHF treatment improved LV function upon reperfusion, decreased LDH, and preserved eNOS expression. The antioxidant DiOHF-6-SA also preserved contractility, reduced LDH, and preserved eNOS expression. In contrast, hearts treated with 4′-OH-3′-OCH3F showed a degree of contractile impairment similar to that of the vehicle group. DiOHF and DiOHF-6-SA also exerted cardioprotection when given only during reperfusion and not when administered only before ischemia. Flavonol-induced cardioprotection relies on antioxidant activity and is mainly exerted during reperfusion.  相似文献   

10.
Ischemia (I)/reperfusion (RP)-induced endothelial cell (EC) injury is thought to be due to mitochondrial reactive oxygen species (mtROS) production. MtROS have been implicated in mitochondrial fission. We determined whether cultured EC exposure to simulated I/RP causes morphological changes in the mitochondrial network and the mechanisms behind those changes. Because shear stress results in nitric oxide (NO)-mediated endothelial mtROS generation, we simulated I/RP as hypoxia (H) followed by oxygenated flow over the ECs (shear stress of 10dyn/cm(2)). By exposing ECs to shear stress, H, H/reoxygenation (RO), or simulated I/RP and employing MitoTracker staining, we assessed the differential effects of changes in mechanical forces and/or O(2) levels on the mitochondrial network. Static or sheared ECs maintained their mitochondrial network. H- or H/RO-exposed ECs underwent changes, but mitochondrial fission was significantly less compared to that in ECs exposed to I/RP. I/RP-induced fission was partially inhibited by antioxidants, a NO synthase inhibitor, or an inhibitor of the fission protein dynamin-related protein 1 (Drp1) and was accompanied by Drp1 oligomerization and phosphorylation (Ser616). Hence, shear-induced NO, ROS (including mtROS), and Drp1 activation are responsible for mitochondrial fission in I/RP-exposed ECs, and excessive fission may be an underlying cause of EC dysfunction in postischemic hearts.  相似文献   

11.
Myocardial injury due to ischemia‐reperfusion (I‐R) damage remains a major clinical challenge. Its pathogenesis is complex including endothelial dysfunction and heightened oxidative stress although the key driving mechanism remains uncertain. In this study we tested the hypothesis that the I‐R process induces a state of insufficient L ‐arginine availability for NO biosynthesis, and that this is pivotal in the development of myocardial I‐R damage. In neonatal rat ventricular cardiomyocytes (NVCM), hypoxia‐reoxygenation significantly decreased L ‐arginine uptake and NO production (42 ± 2% and 71 ± 4%, respectively, both P < 0.01), maximal after 2 h reoxygenation. In parallel, mitochondrial membrane potential significantly decreased and ROS production increased (both P < 0.01). NVCMs infected with adenovirus expressing the L ‐arginine transporter, CAT1, and NVCMs supplemented with L ‐arginine both exhibited significant (all P < 0.05) improvements in NO generation and mitochondrial membrane potentials, with a concomitant significant fall in ROS production and lactate dehydrogenase release during hypoxia‐reoxygenation. In contrast, L ‐arginine deprived NVCM had significantly worsened responses to hypoxia‐reoxygenation. In isolated perfused mouse hearts, L ‐arginine infusion during reperfusion significantly improved left ventricular function after I‐R. These improved contractile responses were not dependent on coronary flow but were associated with a significant decrease in nitrotyrosine formation and increases in phosphorylation of both Akt and troponin I. Collectively, these data strongly implicate reduced L ‐arginine availability as a key factor in the pathogenesis of I‐R injury. Increasing L ‐arginine availability via increased CAT1 expression or by supplementation improves myocardial responses to I‐R. Restoration of L ‐arginine availability may therefore be a valuable strategy to ameliorate I‐R injury. J. Cell. Biochem. 108: 156–168, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Methods that increase cardiomyocyte survival upon exposure to ischemia, hypoxia and reoxygenation injuries are required to improve the efficacy of cardiac cell therapy and enhance the viability and function of engineered tissues. We investigated the effect of combined hypoxia/NaNO2 pretreatment on rat neonatal cardiomyocyte (CM), cardiac fibroblast, and human embryonic stem cell‐derived CM (hESC‐CM) survival upon exposure to hypoxia/reoxygenation (H/R) injury in vitro. Cells were pretreated with and without hypoxia and/or various concentrations of NaNO2 for 20 min, then incubated for 2 h under hypoxic conditions, followed by 2 h in normoxia. The control cells were maintained under normoxia for 4 h. Pretreatment with either hypoxia or NaNO2 significantly increased CM viability but had no effect on cardiac fibroblast viability. Combined hypoxia/NaNO2 pretreatment significantly increased CM viability but significantly decreased cardiac fibroblast viability. In rat neonatal CMs, cell death, as determined by lactate dehydrogenase (LDH) activity, was significantly reduced with hypoxia/NaNO2 pretreatment; and in hESC‐CMs, hypoxia/NaNO2 pretreatment increased the BCL‐2/BAX gene expression ratio, suggesting that hypoxia/NaNO2 pretreatment promotes cell viability by downregulating apoptosis. Additionally, we found a correlation between the prosurvival effect of hypoxia/NaNO2 pretreatment and the myoglobin content of the cells by comparing neonatal rat ventricular and atrial CMs, which express high and low myoglobin respectively. Functionally, hypoxia/NaNO2 pretreatment significantly improved the excitation threshold upon H/R injury to the level observed for uninjured cells, whereas pretreatment did not affect the maximum capture rate. Hence, hypoxia/NaNO2 pretreatment may serve as a strategy to increase CM survival in cardiac regenerative therapy applications and tissue engineering. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:482–492, 2015  相似文献   

13.
Calcineurin B subunit (CnB) is the regulatory subunit of calcineurin (Cn), a Ca2+/calmodulin-dependent serine/threonine protein phosphatase. It has been reported that mice deleting the CnB gene lose nearly all Cn activity and show poor tolerance to cardiac stress; CnB gene expression is downregulated in the hearts of rats that have suffered ischemia/reperfusion (I/R) injury. Therefore, we wonder whether injection of exogenous CnB protein can prevent the rats from suffering I/R injury. In cardiomyocytes, fluorogenic labeling shows that exogenous CnB quickly enters the cell. Pretreatment of cardiomyocytes with CnB reduces apoptosis in response to hypoxia/reoxygenation injury (an in vitro model mimicking ischemia/reperfusion injury), and CsA reverses this effect by inhibiting Cn activity. Furthermore, CnB upregulates Bcl-2 and Bcl-XL expression in the process of hypoxia/reoxygenation injury, which may contribute to protecting cardiomyocytes against apoptosis. In vivo experiments shows that pretreatment with CnB improves cardiac contractile function and reduces the frequency of arrhythmias induced by global I/R injury. These findings reveal a novel function for CnB protein in cardiac stress response and suggest a possible application of CnB in coronary disease therapy.  相似文献   

14.
Hydrogen sulfide (H2S) and nitric oxide (NO) are major gasotransmitters produced in endothelial cells (ECs), contributing to the regulation of vascular contractility and structural integrity. Their interaction at different levels would have a profound impact on angiogenesis. Here, we showed that H2S and NO stimulated the formation of new microvessels. Incubation of human umbilical vein endothelial cells (HUVECs‐926) with NaHS (a H2S donor) stimulated the phosphorylation of endothelial NO synthase (eNOS) and enhanced NO production. H2S had little effect on eNOS protein expression in ECs. L‐cysteine, a precursor of H2S, stimulated NO production whereas blockage of the activity of H2S‐generating enzyme, cystathionine gamma‐lyase (CSE), inhibited this action. CSE knockdown inhibited, but CSE overexpression increased, NO production as well as EC proliferation. LY294002 (Akt/PI3‐K inhibitor) or SB203580 (p38 MAPK inhibitor) abolished the effects of H2S on eNOS phosphorylation, NO production, cell proliferation and tube formation. Blockade of NO production by eNOS‐specific siRNA or nitro‐L‐arginine methyl ester (L‐NAME) reversed, but eNOS overexpression potentiated, the proliferative effect of H2S on ECs. Our results suggest that H2S stimulates the phosphorylation of eNOS through a p38 MAPK and Akt‐dependent pathway, thus increasing NO production in ECs and vascular tissues and contributing to H2S‐induced angiogenesis.  相似文献   

15.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α2-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α2-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α2-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α2-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α2-adrenergic receptor stimulation.  相似文献   

16.
Emerging evidence suggests that arginase contributes to endothelial dysfunction in diabetes. Intracellular signaling pathways, which interplay between arginase and eNOS enzyme activity leading to the development of endothelial dysfunction in hyperglycemia are not fully understood. Here, we analyzed the possible involvement of hyperglycemia (HG) induced arginase expression in eNOS protein regulation and activity and also the impact of arginase inhibition on eNOS activity. Furthermore, the roles of p38 MAPK and Erk1/2 phosphorylation in upregulation of arginase expression and eNOS dysregulation in endothelial cells (ECs) under hyperglycemia were evaluated. Protein analysis showed a concurrent increase in arginase I expression and decrease in eNOS expression and phosphorylation at Ser1177 under HG conditions. There was no simultaneous change in phosphorylation of eNOS at Thr495 in HG. Arginase inhibition prevented increased arginase activity, restored impaired NO bioavailability and reduced superoxide anion generation. Inhibition of MAP-kinases demonstrated that, unlike Erk1/2, p38 MAPK is an upstream activator in a signaling cascade leading to increased arginase I in HG conditions. P38 MAPK protein expression and phosphorylation were increased in response to HG. In the presence of a p38 MAPK inhibitor, HG-induced arginase expression was blunted. Although Erk1/2 was activated in HG, increased arginase expression was not blocked by co-treatment with an Erk1/2 inhibitor. Activation of both, p38 MAPK and Erk1/2 in HG, induced a downregulation in eNOS activity. Hence, applying MAPK inhibitors increased eNOS phosphorylation in HG.In conclusion, these findings demonstrate contributions of arginase I in the development of endothelial cell dysfunction under HG conditions via impaired eNOS regulation, which maybe mediated by p38 MAPK.  相似文献   

17.
Ischemia/reperfusion and hypoxia/reoxygenation of the heart both induce shedding of the coronary endothelial glycocalyx. The processes leading from an oxygen deficit to shedding are unknown. An involvement of resident perivascular cardiac mast cells has been proposed. We hypothesized that either adenosine or inosine or both, generated by nucleotide catabolism, attain the concentrations in the interstitial space sufficient to stimulate A3 receptors of mast cells during both myocardial ischemia/reperfusion and hypoxia/reoxygenation. Isolated hearts of guinea pigs were subjected to either normoxic perfusion (hemoglobin-free Krebs-Henseleit buffer equilibrated with 95% oxygen), 20 minutes hypoxic perfusion (buffer equilibrated with 21% oxygen) followed by 20 minutes reoxygenation, or 20 minutes stopped-flow ischemia followed by 20 minutes normoxic reperfusion (n = 7 each). Coronary venous effluent was collected separately from so-called transudate, a mixture of interstitial fluid and lymphatic fluid appearing on the epicardial surface. Adenosine and inosine were determined in both fluid compartments using high-performance liquid chromatography. Damage to the glycocalyx was evident after ischemia/reperfusion and hypoxia/reoxygenation. Adenosine concentrations rose to a level of 1 μM in coronary effluent during hypoxic perfusion, but remained one order of magnitude lower in the interstitial fluid. There was only a small rise in the level during postischemic perfusion. In contrast, inosine peaked at over 10 μM in interstitial fluid during hypoxia and also during reperfusion, while effluent levels remained relatively unchanged at lower levels. We conclude that only inosine attains levels in the interstitial fluid of hypoxic and postischemic hearts that are sufficient to explain the activation of mast cells via stimulation of A3-type receptors.  相似文献   

18.
Over-activation of p38 is implicated in many cardiovascular diseases (CVDs), including myocardial infarction, hypertrophy, heart failure, and ischemic heart disease. Numerous therapeutic interventions for CVDs have been directed toward the inhibition of the p38 mitogen-activated protein kinase activation that contributes to the detrimental effect after ischemia/reperfusion (I/R) injuries. However, the efficacy of these treatments is far from ideal, as they lack specificity and are associated with high toxicity. Previously, we demonstrated that N-acetyl cysteine (NAC) pretreatment up-regulates DUSP4 expression in endothelial cells, regulating p38 and ERK1/2 activities, and thus providing a protective effect against oxidative stress. Here, endothelial cells under hypoxia/reoxygenation (H/R) insult and isolated heart I/R injury were used to investigate the role of DUSP4 in the modulation of the p38 pathway. In rat endothelial cells, DUSP4 is time-dependently degraded by H/R (0.25±0.07-fold change of control after 2 h H/R). Its degradation is closely associated with hyperphosphorylation of p38 (2.1±0.36-fold change) and cell apoptosis, as indicated by the increase in cells immunopositive for cleaved caspase-3 (12.59±3.38%) or TUNEL labeling (29.46±3.75%). The inhibition of p38 kinase activity with 20 µM SB203580 during H/R prevents H/R-induced apoptosis, assessed via TUNEL (12.99±1.89%). Conversely, DUSP4 gene silencing in endothelial cells augments their sensitivity to H/R-induced apoptosis (45.81±5.23%). This sensitivity is diminished via the inhibition of p38 activity (total apoptotic cells drop to 17.47±1.45%). Interestingly, DUSP4 gene silencing contributes to the increase in superoxide generation from cells. Isolated Langendorff-perfused mouse hearts were subjected to global I/R injury. DUSP4-/- hearts had significantly larger infarct size than WT. The increase in I/R-induced infarct in DUSP4-/- mice significantly correlates with reduced functional recovery (assessed by RPP%, LVDP%, HR%, and dP/dtmax) as well as lower CF% and a higher initial LVEDP. From immunoblotting analysis, it is evident that p38 is significantly overactivated in DUSP4-/- mice after I/R injury. The activation of cleaved caspase-3 is seen in both WT and DUSP4-/- I/R hearts. Infusion of a p38 inhibitor prior to ischemia and during the reperfusion improves both WT and DUSP4-/- cardiac function. Therefore, the identification of p38 kinase modulation by DUSP4 provides a novel therapeutic target for oxidant-induced diseases, especially myocardial infarction.  相似文献   

19.
《Free radical research》2013,47(9):1027-1035
Abstract

To date, the role that NO derived from endothelial NO synthase (eNOS) plays in the development of the injuries occurring under hypoxia/reoxygenation (H/R) in the lung remains unknown and thus constitutes the subject of the present work. A follow-up study was conducted in Wistar rats submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 48 h and 5 days), with or without prior treatment using the eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis, protein nitration and NO production (NOx) were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose, implying that eNOS-derived NO may have a protective effect against the injuries occurring during H/R in the lung. These findings could open the possibility of future studies to design new therapies for this type of hypoxia based on NO-pharmacology.  相似文献   

20.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号