首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that nitric oxide (NO) reacts with cellular iron and thiols to form dinitrosyliron complexes (DNIC). Little is known, however, regarding their formation and biological fate. Our quantitative measurements reveal that cellular concentrations of DNIC are proportionally the largest of all NO-derived adducts (900 pmol/mg protein, or 45-90 μM). Using murine macrophages (RAW 264.7), we measured the amounts, and kinetics, of DNIC assembly and disappearance from endogenous and exogenous sources of NO in relation to iron and O2 concentration. Amounts of DNIC were equal to or greater than measured amounts of chelatable iron and depended on the dose and duration of NO exposure. DNIC formation paralleled the upregulation of iNOS and occurred at low physiologic NO concentrations (50-500 nM). Decreasing the O2 concentration reduced the rate of enzymatic NO synthesis without affecting the amount of DNIC formed. Temporal measurements revealed that DNIC disappeared in an oxygen-independent manner (t1/2 = 80 min) and remained detectable long after the NO source was removed (> 24 h). These results demonstrate that DNIC will be formed under all cellular settings of NO production and that the contribution of DNIC to the multitude of observed effects of NO must always be considered.  相似文献   

2.
The neuronal damage following cerebral ischemia is a serious risk to stroke patients. The aim of this study was to investigate the neuroprotective effects of alkaloid extract from Leonurus heterophyllus (LHAE) on cerebral ischemic injury. After 24 h of reperfusion following ischemia for 2 h induced by middle cerebral artery occlusion (MCAO), some rats were intraperitoneally administered different doses of LHAE (3.6, 7.2, 14.4 mg/kg, respectively). Neurological examination was measured in all animals. Infarct volume, myeloperoxidase (MPO) activity, levels of nitrate/nitrite metabolite (NO) and apoptosis ratio of nerve fiber in brain were determined. The results showed that LHAE at 7.2 mg/kg or 14.4 mg/kg exerted significantly decreasing neurological deficit scores and reducing the infarct volume on rats with focal cerebral ischemic injury (p < 0.05). At those dose, the MPO content were significantly decreased in ischemic brain as compared with model group (p < 0.05). LHAE at 14.4 mg/kg significantly decreased the NO level compared with the model group (p < 0.05). In addition, LHAE significantly decreased the apoptosis ratio of nerve fiber compared with the model group (p < 0.05). This study suggests that LHAE may be used for treatment of ischemic stroke as a neuroprotective agent. Further studies are warranted to assess the efficacy and safety of LHAE in patients.  相似文献   

3.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

4.
5.
The biotransformation and cytotoxic effects of hydroxychavicol (HC; 1-allyl-3,4-dihydroxybenzene), which is a catecholic component in piper betel leaf and a major intermediary metabolite of safrole in rats and humans, was studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to HC caused not only concentration (0.25-1.0 mM)- and time (0-3 h)-dependent cell death accompanied by the loss of cellular ATP, adenine nucleotide pools, reduced glutathione, and protein thiols, but also the accumulation of glutathione disulfide and malondialdehyde, indicating lipid peroxidation. At a concentration of 1 mM, the cytotoxic effects of safrole were less than those of HC. The loss of mitochondrial membrane potential and generation of oxygen radical species assayed using 2′,7′-dichlorodihydrofluoresein diacetate (DCFH-DA) in hepatocytes treated with HC were greater than those with safrole. HC at a weakly toxic level (0.25 and/or 0.50 mM) was metabolized to monoglucuronide, monosulfate, and monoglutathione conjugates, which were identified by mass spectra and/or 1H nuclear magnetic resonance spectra. The amounts of sulfate rather than glucuronide or glutathione conjugate predominantly increased, accompanied by a loss of the parent compound, with time. In hepatocytes pretreated with either diethyl maleate or salicylamide, HC-induced cytotoxicity was enhanced, accompanied by a decrease in the formation of these conjugates and by the inhibition of HC loss. Taken collectively, our results indicate that (a) mitochondria are target organelles for HC, which elicits cytotoxicity through mitochondrial failure related to mitochondrial membrane potential at an early stage and subsequently lipid peroxidation through oxidative stress at a later stage; (b) the onset of cytotoxicity depends on the initial and residual concentrations of HC rather than those of its metabolites; (c) the toxicity of HC is greater than that of safrole, suggesting the participation of a catecholic intermediate in safrole cytotoxicity in rat hepatocytes.  相似文献   

6.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   

7.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

8.
The acute-phase protein serum amyloid A (SAA) is elevated during inflammation and may be deposited in atheroma where it promotes atherosclerosis. We investigated the proatherogenic effects of SAA on the vascular endothelium and their regulation by high-density lipoprotein (HDL). Exposure of human aortic endothelial cells (HAEC) to SAA (0.25-25 μg/ml) decreased nitric oxide (NO) synthesis/bioavailability, although the endothelial NO synthase monomer-to-dimer ratio was unaffected. SAA (10 μg/ml) stimulated a Ca2+ influx linked to apocynin-sensitive superoxide radical anion (O2•−) production. Gene expression for arginase-1, nuclear factor κB (NF-κB), interleukin-8, and tissue factor (TF) increased within 4 h of SAA stimulation. Enzymatically active Arg-1/2 was detected in HAEC cultured with SAA for 24 h. Therefore, in addition to modulating NO bioavailability by stimulating O2•− production in the endothelium, SAA modulated vascular l-Arg bioavailability. SAA also diminished relaxation of preconstricted aortic rings induced by acetylcholine, and added superoxide dismutase restored the vascular response. Preincubation of HAEC with HDL (100 or 200, but not 50, μg/ml) before (not after) SAA treatment ameliorated the Ca2+ influx and O2•− production; decreased TF, NF-κB, and Arg-1 gene expression; and preserved overall vascular function. Thus, SAA may promote endothelial dysfunction by modulating NO and l-Arg bioavailability, and HDL pretreatment may be protective. The relative HDL to SAA concentrations may regulate the proatherogenic properties of SAA on the vascular endothelium.  相似文献   

9.
Various environmental stresses induce reactive oxygen species (ROS), causing deleterious effects on plant cells. Glutathione (GSH), a critical antioxidant, is used to combat ROS. GSH is produced by γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the Oryza sativa L. Japonica cv. Ilmi ECS (OsECS) gene, we generated transgenic rice plants overexpressing OsECS under the control of an inducible promoter (Rab21). When grown under saline conditions (100 mM) for 4 weeks, 2-independent transgenic (TGR1 and TGR2) rice plants remained bright green in comparison to control wild-type (WT) rice plants. TGR1 and TGR2 rice plants also showed a higher GSH/GSSG ratio than did WT rice plants in the presence of 100 mM NaCl, which led to enhanced redox homeostasis. TGR1 and TGR2 rice plants also showed lower ion leakage and higher chlorophyll-fluorescence when exposed to 10 μM methyl viologen (MV). Furthermore, the TGR1 and TGR2 rice seeds had approximately 1.5-fold higher germination rates in the presence of 200 mM salt. Under paddy field conditions, OsECS-overexpression in transgenic rice plants increased rice grain yield (TGW) and improved biomass. Overall, our results show that OsECS overexpression in transgenic rice increases tolerance and germination rate in the presence of abiotic stress by improving redox homeostasis via an enhanced GSH pool. Our findings suggest that increases in grain yield by OsECS overexpression could improve crop yields under natural environmental conditions.  相似文献   

10.

Aims

Aristolochic acid (AA) nephrotoxicity is related to accumulation of methylglyoxal (MGO) and Nε-(carboxymethyl)lysine (CML) in the mouse kidney. We studied the activity of renal semicarbazide-sensitive amine oxidase (SSAO), a key enzyme involved in MGO generation, in AA-treated mice, and investigated nephroprotective effects produced by metformin, a MGO scavenger.

Methods

Mice were orally administered water or metformin for 15 days (12 or 24 mg kg− 1 day− 1), and injected AA (5 mg kg− 1 day− 1) intraperitoneally for 8 days starting on day 8. Renal function was studied, and histopathological examination, determination of renal SSAO activity, and measurement of MGO levels were performed.

Key findings

Compared to control mice, AA-injected mice showed significant renal damage and approximately 2.7-fold greater renal SSAO activity (p < 0.05). Further, compared to control treatment, administration of 12 mg/kg metformin inhibited formation of renal lesions, and significantly decreased renal MGO levels (37.33 ± 9.78 vs. 5.89 ± 2.64 μg/mg of protein, respectively, p < 0.01). In the AA-treated mice, metformin also inhibited the accumulation of CML in renal tubules, but did not affect SSAO activity.

Significance

This study is the first to show elevated renal SSAO activity in AA-treated mice, which could be involved in MGO accumulation. Moreover, MGO scavenging by metformin reduces AA nephrotoxicity. These findings suggest that reducing MGO accumulation produces nephroprotection, revealing new therapeutic strategies for the management. SSAO is a key enzyme involved in MGO generation, and consequently, inhibition of renal SSAO activity is worth investigating in AA nephrotoxicity and other renal pathologies further.  相似文献   

11.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

12.
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.  相似文献   

13.
Nitrogen fixation of terrestrial legumes is strongly and rapidly diminished under flooding. Although recovery is possible with the formation of aerenchyma, information is scarce regarding recovery after draining following short-term flooding, before the appearance of morphological adaptations. This study used soybean (Glycine max) plants nodulated with Bradyrhizobium elkanii to determine xylem sap glutamine as an indication of nitrogen fixation activity during recovery from different periods of flooding. Xylem glutamine levels showed rapid recovery (within 90 min) following periods of flooding up to 4 h. Recovery was progressively slower after longer periods of flooding. After 48 h flooding very little recovery could be observed within the first 120 min after draining but recovery was possible within 48 h. Consistent with the changes in xylem glutamine, direct measurements of apparent nitrogenase activity carried out immediately on draining revealed rapid recovery after flooding for 1 h and slow recovery following 48 h of flooding. In the latter case, nitrogenase activity largely recovered 24 h after draining. Experiments with 15N2 incorporation into amino acids exported in the xylem sap revealed that glutamine was by far the most highly labelled amino acid in sap collected over the first 30 min of exposure to the isotope. This is conclusive evidence that xylem sap glutamine is an immediate product of N2 fixation and export. The changes in xylem sap glutamine seen on flooding (decline) and after draining (recovery) can therefore be attributed to changes in nitrogenase activity. The data show that xylem sap glutamine is a useful means for assessing changes in nitrogenase activity, especially when the root system is submersed in water and activity cannot be measured directly.  相似文献   

14.
Neospora caninum causes neurologic disease in dogs and abortion in cattle. Little is known about the immune response of the CNS against this protozoan. The aim of this study was to evaluate production of IL-6, IL-10, TNF-α, IFN-γ, and NO in rat mixed glial cell cultures infected by N. caninum. IFN-γ was not observed. The mean cytokine released after 24 and 72 h of infection were 3.8 ± 0.6 and 3.7 ± 0.6 pg TNF-α/mg protein and 2.7 ± 0.69 and 4.1 ± 0.64 pg IL-10/mg protein, respectively, and more than 8.0 pg IL-6/mg protein for both time points. NO levels increased 24 h post-infection (2.3 ± 0.8 pg/mg protein) until 72 h (4.2 ± 1.1 pg/mg protein) and the number of tachyzoites reduced with the time. Our results show high levels of regulatory cytokines that may suppress the harmful effects of IFN-γ; high levels of TNF-α and NO may represent an effective response by infected glial cells against N. caninum.  相似文献   

15.
Reduction of Complex I (NADH:ubiquinone oxidoreductase I) from Escherichia coli by NADH was investigated optically by means of an ultrafast stopped-flow approach. A locally designed microfluidic stopped-flow apparatus with a low volume (0.2 μl) but a long optical path (10 mm) cuvette allowed measurements in the time range from 270 μs to seconds. The data acquisition system collected spectra in the visible range every 50 μs. Analysis of the obtained time-resolved spectral changes upon the reaction of Complex I with NADH revealed three kinetic components with characteristic times of < 270 μs, 0.45–0.9 ms and 3–6 ms, reflecting reduction of different FeS clusters and FMN. The rate of the major (τ = 0.45–0.9 ms) component was slower than predicted by electron transfer theory for the reduction of all FeS clusters in the intraprotein redox chain. This delay of the reaction was explained by retention of NAD+ in the catalytic site. The fast optical changes in the time range of 0.27–1.5 ms were not altered significantly in the presence of 10-fold excess of NAD+ over NADH. The data obtained on the NuoF E95Q variant of Complex I shows that the single amino acid replacement in the catalytic site caused a strong decrease of NADH binding and/or the hydride transfer from bound NADH to FMN.  相似文献   

16.

Aims

In liver cirrhosis, inflammation triggers portal hypertension. Kupffer cells (KC) produce vasoconstrictors upon activation by bacterial constituents. Here, we hypothesize that the anti-inflammatory action of the cannabinoid receptor 2 (CB2) agonists JWH-133 and GP 1a attenuate portal hypertension.

Main methods

In vivo measurements of portal pressures and non-recirculating liver perfusions were performed in rats 4 weeks after bile duct ligation (BDL). Zymosan (150 μg/ml, isolated liver perfusion) or LPS (4 mg/kg b.w., in vivo) was infused to activate the KC in the absence or presence of JWH-133 (10 mg/kg b.w.), GP 1a (2.5 mg/kg b.w.) or ZnPP IX (1 μM). Isolated KC were treated with Zymosan (0.5 mg/ml) in addition to JWH-133 (5 μM). The thromboxane (TX) B2 levels in the perfusate and KC media were determined by ELISA. Heme oxygenase-1 (HO-1) and CB2 were analyzed by Western blot or confocal microscopy.

Key findings

JWH-133 or GP 1a pre-treatment attenuated portal pressures following KC activation in all experimental settings. In parallel, HO-1 expression increased with JWH-133 pre-treatment. However, the inhibition of HO-1 enhanced portal hypertension, indicating the functional role of this novel pathway. In isolated KC, the expression of CB2 and HO-1 increased with Zymosan, LPS and JWH-133 treatment while TXB2 production following KC activation was attenuated by JWH-133 pre-treatment.

Significance

JWH-133 or GP 1a treatment attenuates portal hypertension. HO-1 induction by JWH-133 plays a functional role. Therefore, the administration of JWH-133 or GP 1a represents a promising new treatment option for portal hypertension triggered by microbiological products.  相似文献   

17.
Feng D  Chen Z  Xue S  Zhang W 《Bioresource technology》2011,102(12):6710-6716
Effects of nitrate feeding on the cell growth and lipid accumulation of marine microalgae Isochrysis zhangjiangensis were investigated. When nitrate was supplied at interval of 24 h, instead of 72 h, a high lipid content of 40.9% and a biomass density of 3.1 g L−1 were obtained. To confirm whether I. zhangjiangensis accumulates lipid during nitrogen-repletion, a two-stage cultivation method was applied. This algal strain had a high lipid content during sustained nitrate addition and showed a high carbohydrate content under nitrate-depletion conditions. These results revealed that this algal strain can accumulate lipids under nitrogen-repletion conditions and accumulate carbohydrate under nitrogen-depletion conditions. When cultured in an extremely high nitrate concentration, 9 g L−1 at 24 h intervals, the growth of algal cells was suppressed, but the highest lipid content of 53% was attained. This special characteristic of lipid accumulation makes I. zhangjiangensis an ideal candidate for producing biodiesel using N-rich wastewater.  相似文献   

18.
Flavohemoglobins (flavoHbs), commonly found in bacteria and fungi, afford protection from nitrosative stress by degrading nitric oxide (NO) to nitrate. Giardia intestinalis, a microaerophilic parasite causing one of the most common intestinal human infectious diseases worldwide, is the only pathogenic protozoon as yet identified coding for a flavoHb. By NO amperometry we show that, in the presence of NADH, the recombinant Giardia flavoHb metabolizes NO with high efficacy under aerobic conditions (TN = 116 ± 10 s−1 at 1 μM NO, T = 37 °C). The activity is [O2]-dependent and characterized by an apparent KM,O2 = 22 ± 7 μM. Immunoblotting analysis shows that the protein is expressed at low levels in the vegetative trophozoites of Giardia; accordingly, these cells aerobically metabolize NO with low efficacy. Interestingly, in response to nitrosative stress (24-h incubation with ?5 mM nitrite) flavoHb expression is enhanced and the trophozoites thereby become able to metabolize NO efficiently, the activity being sensitive to both cyanide and carbon monoxide. The NO-donors S-nitrosoglutathione (GSNO) and DETA-NONOate mimicked the effect of nitrite on flavoHb expression. We propose that physiologically flavoHb contributes to NO detoxification in G. intestinalis.  相似文献   

19.
20.
Reaction between the dinuclear model hydrolases [M2(μ-OAc)2(OAc)2(μ-H2O)(tmen)2]; M = Ni (1); M = Co (2) and trimethylsilyltrifluoromethanesulphonate (TMS-OTf) under identical reaction conditions gives the mononuclear complex [Ni(OAc)(H2O)2(tmen)][OTf] · H2O (3) in the case of nickel and the dinuclear complex [Co2(μ-OAc)2(μ-H2O)2(tmen)2][OTf]2 (4) in the case of cobalt.Reaction of (3) with urea gives the previously reported [Ni(OAc)(urea)2(tmen)][OTf] (5), whereas (4) gives [Co2(OAc)3(urea)(tmen)2][OTf] (6) previously obtained by direct reaction of (2) with urea. Both (3) and (4) react with monohydroxamic acids (RHA) to give the dihydroxamate bridged dinuclear complexes [M2(μ-OAc)(μ-RA)2(tmen)2][OTf]; M = Ni (7); M = Co (8) previously obtained by the reaction of (1) and (2) with RHA, illustrating the greater ability of hydroxamic acids to stabilize dinuclear complexes over that of urea by means of their bridging mode, and offering a possible explanation for the inhibiting effect of hydroxamic acids by means of their displacing bridging urea in a possible intermediate invoked in the action of urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号