首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A modern Green Revolution gene for reduced height in wheat   总被引:2,自引:0,他引:2       下载免费PDF全文
Increases in the yield of wheat during the Green Revolution of the late 20th century were achieved through the introduction of Reduced height (Rht) dwarfing genes. The Rht‐B1 and Rht‐D1 loci ensured short stature by limiting the response to the growth‐promoting hormone gibberellin, and are now widespread through international breeding programs. Despite this advantage, interference with the plant's response to gibberellin also triggers adverse effects for a range of important agronomic traits, and consequently modern Green Revolution genes are urgently required. In this study, we revisited the genetic control of wheat height using an association mapping approach and a large panel of 1110 worldwide winter wheat cultivars. This led to the identification of a major Rht locus on chromosome 6A, Rht24, which substantially reduces plant height alone as well as in combination with Rht‐1b alleles. Remarkably, behind Rht‐D1, Rht24 was the second most important locus for reduced height, explaining 15.0% of the genotypic variance and exerting an allele substitution effect of –8.8 cm. Unlike the two Rht‐1b alleles, plants carrying Rht24 remain sensitive to gibberellic acid treatment. Rht24 appears in breeding programs from all countries of origin investigated, with increased frequency over the last decades, indicating that wheat breeders have actively selected for this locus. Taken together, this study reveals Rht24 as an important Rht gene of commercial relevance in worldwide wheat breeding.  相似文献   

2.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

3.
4.
 The two GA-insensitive dwarfing gene loci Rht-B1 and Rht-D1 were mapped using three F2 populations, segregating for Rht-B1c (Rht3), Rht-D1b (Rht2) or Rht-D1c (Rht10). Rht-B1c was mapped on chromosome 4BS in the centromere region, distal and closely linked to the RFLP markers Xpsr144 (11.9 cM) and Xpsr584 (17.8 cM), but proximal to Xmwg634 (30 cM). Rht-D1c, however, was found to be closely linked to the distally located markers Xpsr921 (0.8 cM) and Xmwg634 (1.5 cM). The homoeologous relationships between the GA-insensitive dwarfing genes within the Triticeae are discussed. Received: 2 May 1997 / Accepted: 9 June 1997  相似文献   

5.

Key message

The dwarfing gene Rht24 on chromosome 6A acts in the wheat population ‘Solitär × Bussard’, considerably reducing plant height without increasing Fusarium head blight severity and delaying heading stage.

Abstract

The introduction of the Reduced height (Rht)-B1 and Rht-D1 semi-dwarfing genes led to remarkable increases in wheat yields during the Green Revolution. However, their utilization also brings about some unwanted characteristics, including the increased susceptibility to Fusarium head blight. Thus, Rht loci that hold the potential to reduce plant height in wheat without concomitantly increasing Fusarium head blight (FHB) susceptibility are urgently required. The biparental population ‘Solitär × Bussard’ fixed for the Rht-1 wild-type alleles, but segregating for the recently described gibberellic acid (GA)-sensitive Rht24 gene, was analyzed to identify quantitative trait loci (QTL) for FHB severity, plant height, and heading date and to evaluate the effect of the Rht24 locus on these traits. The most prominent QTL was Rht24 on chromosome 6A explaining 51% of genotypic variation for plant height and exerting an additive effect of ? 4.80 cm. For FHB severity three QTL were detected, whereas five and six QTL were found for plant height and heading date, respectively. No FHB resistance QTL was co-localized with QTL for plant height. Unlike the Rht-1 semi-dwarfing alleles, Rht24b did not significantly affect FHB severity. This demonstrates that the choice of semi-dwarfing genes used in plant breeding programs is of utmost consideration where resistance to FHB is an important breeding target.
  相似文献   

6.
Gibberellin-sensitive dwarfing gene Rht18 was mapped in two durum wheat recombinant inbred lines (RIL) populations developed from crosses, Bijaga Yellow/Icaro and HI 8498/Icaro. Rht18 was mapped within genetic interval of 1.8 cM on chromosome 6A. Simple sequence repeat (SSR) markers S470865SSR4, barc37 and TdGA2ox-A9 specific marker showed co-segregation with Rht18 in Bijaga Yellow/Icaro population consisting 256 RILs. Effect of Rht18 on plant height was validated in HI 8498/Icaro RIL population which segregated for Rht18 and Rht-B1b. Rht-B1b from HI 8498 showed pleiotropic effect on plant height and coleoptile length, on the other hand, Rht18 did not show effect on coleoptile length. The SSR and SNP markers linked to Rht18 were also validated by assessing their allelic frequency in 89 diverse durum and bread wheat accessions. It was observed that 204 bp allele of S470865SSR4 could differentiate Icaro from rest of the wheat accessions except HI 8498, suggesting its utility for selection of Rht18 in wheat improvement programs. Rht18 associated alleles of TdGA2ox-A9, IAW4371 and IAW7940 were absent in most of the tall Indian local durum wheat and bread wheat, hence could be used to transfer Rht18 to bread wheat and local durum wheat. SSR marker barc3 showed high recombination frequency with Rht18, though it showed allele unique to Icaro. Since semidwarf wheat with GA-sensitive dwarfing genes are useful in dry environments owing to their longer coleoptile, better emergence and seedling vigor, Rht18 may provide a useful alternative to widely used GA-insensitive dwarfing genes under dry environments.  相似文献   

7.
Dwarfing genes and cell dimensions in different organs of wheat   总被引:1,自引:0,他引:1  
A field experiment was conducted under non-limiting water and nutritional conditions with three near-isogenic lines of spring wheat (dwarf, DD; semi-dwarf, SD and standard height, SH) to study the impact of the GA-insensitive alleles Rht1 and Rht2, at the cellular level, on the growth of different vegetative organs and of the pericarp of grains. Cell length and width of blades of different leaves (3, 7 and flag leaf), the flag-leaf sheath and the penultimate internode as well as the pericarp of basal grains from central spikelets of the spike were evaluated. With the exception of the flag leaf, dwarfing genes produced a significant reduction in cell length in all the different vegetative organs analysed. There was no effect on the number of cells nor their width. Therefore, in vegetative organs, the effects of these alleles appeared to be exclusively due to a reduction in cell length. It would appear that dwarfing genes act on cell elongation without affecting cell division.The Rht alleles did not modify cell length nor width in the pericarp. Grain weight was different between the lines and these differences were associated with grain volume at the beginning of linear grain growth. Thus, they reduced the size of individual grains by reducing the total number of cells in the pericarp.It appears that Rht alleles reduced the final sizes of vegetative organs (such as internodes and leaves) and of tissues (pericarp) associated with reproductive structures (grains), but the modes of action in these different organs were different.Keywords: Cell dimensions, plant height, Rht alleles, Triticum aestivum/wheat.   相似文献   

8.
矮秆基因对小麦部分农艺性状的效应   总被引:2,自引:1,他引:1  
以中国主要麦区的124份小麦品种为材料,利用分子标记和系谱分析相结合,对其按照所含的矮秆基因Rht-B1b、Rht-D1b和Rht8进行分类,结合田间株高、旗叶长、小穗数和穗粒数以及室内苗期根系长度等农艺形状的调查,分析不同矮秆基因对小麦农艺性状的效应.结果显示:(1)参试的124份小麦品种(系)中23份含有Rht-B1b,7份含有Rht-D1b,22份含有Rht8基因,34份同时含有Rht-B1b和Rht8,16份同时含有Rht-D1b和Rht8,可分为6组.(2)Rht-B1b和Rht-D1b在降低株高的同时也缩短了旗叶的长度和苗期叶长,Rht8对株高的影响较弱,对旗叶和苗期叶长的影响也较小;3个矮秆基因对苗期根系长度、小穗数没有显著影响;Rht-D1b和Rht8显著增加穗粒数.研究表明,矮秆基因Rht8对小麦株高以及其他农艺性状的影响均较小,但能够显著增加穗粒数,是小麦矮化育种中比较理想的矮秆基因.  相似文献   

9.
In the soft red winter wheat (Triticum aestivum L.) regions of the US, Fusarium head blight (FHB, caused by Fusarium spp.) resistance derived from locally adapted germplasm has been used predominantly. Two soft red winter wheat cultivars, Massey and Ernie, have moderate resistance to FHB. Mapping populations derived from Becker/Massey (B/M) and Ernie/MO 94-317 (E/MO) were evaluated for FHB resistance and other traits in multiple environments. Eight QTL in B/M and five QTL in E/MO were associated with FHB variables including incidence, severity (SEV), index (IND), Fusarium damaged kernels (FDK), deoxynivalenol (DON), and morphological traits flowering time and plant height. Four QTL were common to both populations. Three of them were located at or near known genes: Ppd-D1 on chromosome 2DS, Rht-B1 on 4BS, and Rht-D1 on 4DS. Alleles for dwarf plant height (Rht-B1b and Rht-D1b) and photoperiod insensitivity (Ppd-D1a) had pleiotropic effects in reducing height and increasing FHB susceptibility. The other QTL detected for FHB variables were on 3BL in both populations, 1AS, 1DS, 2BL, and 4DL in B/M, and 5AL (B1) and 6AL in E/MO. The additive effects of FHB variables ranged from 0.4 mg kg?1 of DON to 6.2 % for greenhouse (GH) SEV in B/M and ranged from 0.3 mg kg?1 of DON to 8.3 % for GH SEV in E/MO. The 4DS QTL had epistasis with Ppd-D1, Qdon.umc-6AL, and Qht.umc-4BS, and additive × additive × environment interactions with the 4BS QTL for SEV, IND, and FDK in E/MO. Marker-assisted selection might be used to enhance FHB resistance through selection of favorable alleles of significant QTL, taking into account genotypes at Rht-B1b, Rht-D1a and Ppd-D1a.  相似文献   

10.
Kernel hardness or texture, used to classify wheat (Triticum aestivum L.) into soft and hard classes, is a major determinant of milling and baking quality. Wheat genotypes in the soft class that are termed ‘extra-soft’ (with kernel hardness in the lower end of the spectrum) have been associated with superior end-use quality. In order to better understand the relationship between kernel hardness, milling yield, and various agronomic traits, we performed quantitative trait mapping using a recombinant inbred line population derived from a cross between a common soft wheat line and a genotype classified as an ‘extra-soft’ line. A total of 47 significant quantitative trait loci (QTL) (LOD ≥ 3.0) were identified for nine traits with the number of QTL affecting each trait ranging from three to nine. The percentage of phenotypic variance explained by these QTL ranged from 3.7 to 50.3%. Six QTL associated with kernel hardness and break flour yield were detected on chromosomes 1BS, 4BS, 5BS, 2DS, 4DS, and 5DL. The two most important QTL were mapped onto orthologous regions on chromosomes 4DS (Xbarc1118Rht-D1) and 4BS (Xwmc617Rht-B1). These results indicated that the ‘extra-soft’ characteristic was not controlled by the Hardness (Ha) locus on chromosome 5DS. QTL for eight agronomic traits occupied two genomic regions near semi-dwarf genes Rht-D1 on chromosome 4DS and Rht-B1 on chromosome 4BS. The clustering of these QTL is either due to the pleiotropic effects of single genes or tight linkage of genes controlling these various traits.  相似文献   

11.
Summary RFLP mapping of chromosome 5R in the F3 generation of a rye (Secale cereale L.) cross segregating for gibberellic acid (GA3)-insensitive dwarfness (Ct2/ct2) and spring growth habit (Sp1/sp1) identified RFLP loci close to each of these agronomically important genes. The level of RFLP in the segregating population was high, and thus allowed more than half of the RFLP loci to be mapped, despite partial homozygosity in the parental F2 plant. Eight further loci were mapped in an unrelated F2 rye population, and a further two were placed by inference from equivalent genetic maps of related wheat chromosomes, allowing a consensus map of rye chromosome 5R, consisting of 29 points and spanning 129 cM, to be constructed. The location of the ct2 dwarfing gene was shown to be separated from the segment of the primitive 4RL translocated to 5RL, and thus the gene is probably genetically unrelated to the major GA-insensitive Rht genes of wheat located on chromosome arms 4BS and 4DS. The map position of Sp1 is consistent both with those of wheat Vrn1 and Vrn3, present on chromosome arms 5AL and 5DL, respectively, and with barley Sh2 which is distally located on chromosome arm 7L (= 5HL).  相似文献   

12.
The pleiotropic effects of three genetically related dwarfinggenes were investigated in near-isogenic lines of wheat. TheNORIN 10 semi-dwarfing alleles, Rht 1 and Rht 2, and the TomThumb allele, Rht 3, were assessed for effects on some vegetativemorphological and physiological characters. The Rht allelesaffected leaf size with a resultant decrease in leaf area ofthe whole plant. Rht 3, which had the most marked effects, reducedleaf area in young plants by as much as 30 per cent. Althoughflag leaf dimensions and stomatal distributions of the flagleaf were altered, the gene had no effect on its area, stomatalconductance or net CO2 exchange rate. Comparisons of Rht andtall plants revealed no differences in the abscisic acid (ABA)levels of either turgid or partially dehydrated leaves. Triticum aestivum L., wheat, dwarfing genes, leaf structure, abscisic acid, stomatal conductance, CO2, exchange, relative growth rate  相似文献   

13.
Opportunities exist for replacing reduced height (Rht) genes Rht-B1b and Rht-D1b with alternative dwarfing genes, such as the gibberellin-responsive gene Rht12, for bread wheat improvement. However, a comprehensive understanding of the effects and mode of action of Rht12 is lacking. In the present study, the effects of Rht12 were characterized by analyzing its effects on seeding vigour, seedling roots, leaf and stem morphology, spike development and carbohydrate assimilation and distribution. This was carried out in the four genotypes of F2:3 lines derived from a cross between Ningchun45 and Karcagi (12) in two experiments of autumn sowing and spring sowing. Rht12 significantly decreased stem length (43%∼48% for peduncle) and leaf length (25%∼30% for flag leaf) while the thickness of the internode walls and width of the leaves were increased. Though the final plant stature was shortened (40%) by Rht12, the seedling vigour, especially coleoptile length and root traits at the seedling stage, were not affected adversely. Rht12 elongated the duration of the spike development phase, improved the proportion of spike dry weight at anthesis and significantly increased floret fertility (14%) in the autumn sowing experiment. However, Rht12 delayed anthesis date by around 5 days and even the dominant Vrn-B1 allele could not compensate this negative effect. Additionally, grain size was reduced with the ability to support spike development after anthesis decreased in Rht12 lines. Finally, grain yield was similar between the dwarf and tall lines in the autumn sowing experiment. Thus, Rht12 could substantially reduce plant height without altering seeding vigour and significantly increase spikelet fertility in the favourable autumn sowing environment. The successful utilization of Rht12 in breeding programs will require careful selection since it might delay ear emergence. Nonetheless, the potential exists for wheat improvement by using Rht12.  相似文献   

14.
Plant height is an important agronomic trait in cereal crops, and can affect both plant architecture and grain yield. New dwarfing genes are required for improving the genetic diversity of wheat. In this study, a novel dwarf mutant, NM9, was created by treating seeds of the wheat variety NAU9918 with ethyl methanesulfonate(EMS). NM9 showed obvious phenotypic changes, which were distinct from those caused by other dwarfing genes, especially the reduced plant height, increased effective tiller number, and elongated spike and grain length. The reduced plant height in NM9 was attributable to a semi-dominant dwarfing gene Rht_NM9, which was flanked by two closely linked SNP markers, SNP34 and SNP41, covering an 8.86-Mb region on the chromosome arm 2AS. The results of gibberellic acid(GA) sensitivity evaluation, comparative genomics analysis and allelism test indicated that Rht_NM9 was neither allelic to Rht7 and Rht21 nor homoeoallelic to Rht8, so Rht_NM9 was proposed to be a new dwarfing locus on the homoeologous group 2 chromosomes of wheat. Rht_NM9has a negative effect on plant height and positive effects on effective tiller number and grain size, thus, Rht_NM9 could be used for elucidating the mechanisms underlying plant architecture and grain development.  相似文献   

15.
16.
Fusarium head blight, caused primarily by Fusarium graminearum, is the most important wheat disease in Canada causing both grain yield and quality losses. Selection for resistance to Fusarium head blight in breeding programs has been difficult because of the complex inheritance of resistance and the environmental effect on disease development and expression. The present study was conducted to examine microsatellite markers associated with resistance to Fusarium head blight and evaluate the effectiveness of these microsatellite markers in selecting for resistance to Fusarium head blight in two doubled-haploid populations segregating for Sumai 3-derived resistance genes. Both doubled-haploid populations were evaluated for resistance to Fusarium head blight by inoculation with F. graminearum in the greenhouse. Eight microsatellite markers from chromosomes 3BS, 6B and 5AL were applied to both doubled-haploid populations. The most significant microsatellite markers were found on the short arm of chromosome 3B, explaining 12% and 36% of phenotypic variation for resistance in the DH181/AC Foremost and AC Foremost/93FHB 21 doubled-haploid populations, respectively. Another important microsatellite marker, gwm644 on 6B, explained 21 % of the phenotypic variation for resistance to Fusarium head blight in the DH181/AC Foremost doubled-haploid population. There was a general lack of marker polymorphism on 5AL for the parents used in this study. Microsatellite markers on chromosome 3BS in addition to microsatellite markers on 6B have the potential for accelerating the development of wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.  相似文献   

17.
Resistance to Fusarium head blight (FHB) is of great importance in wheat breeding programs in the northern hemisphere. In Europe, breeders prefer adapted germplasm as resistance donor because of high grain yield and quality demands. Our objective was to identify chromosomal regions affecting FHB resistance among 455 European soft winter wheat (Triticum aestivum L.) lines using a genome-wide association mapping approach and to analyze the importance of epistatic interactions. All entries were evaluated for FHB resistance by inoculation in two environments and several ratings. Wheat was genotyped by 115 simple sequence repeat markers randomly distributed across the genome and two allele-specific markers for Rht-B1 and Rht-D1 genes. The genome-wide scan revealed nine significant (P < 0.05) marker–phenotype associations on seven chromosomes including dwarfing gene Rht-D1. Using a Bonferroni–Holm correction, three significant associations remained on chromosomes 1B, 1D, and 2D. The proportion of the genotypic variance explained simultaneously by individual markers was 36% and increased to 50% when two digenic epistatic interactions were considered, one of them associated with Rht-B1. In conclusion, new genomic regions on chromosomes 1D and 3A could be found for FHB resistance in European wheat and the effect of epistatic interactions was substantial.  相似文献   

18.
Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F2‐derived, F6:7 RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow‐sense heritabilities were high for coleoptile and shoot length (h2 = 0.68–0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht‐B1b (?8.2%) and Rht‐D1b (?10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht‐B1 and Rht‐D1 loci. A large coleoptile length effect allele (= 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (rg = 0.85–0.90) support the co‐location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.  相似文献   

19.
为系统了解青海小麦矮秆基因的分布特点,并进一步为青海高原小麦的株高育种提供优异种质资源。本研究利用5个矮秆基因的特异性分子标记对82份青海小麦品种资源中的矮秆基因进行了检测,并对不同矮秆基因的降秆效应进行了分析。结果表明:82份青海育成小麦品种中有49份材料至少含有一个矮秆基因,其中Rht-B1b的分布频率最高,约占参试材料的28.0%,其次是分布频率为23.2%的Rht8基因,而矮秆基因Rht-D1b、Rht5以及Rht12的分布频率分别为9.8%、13.4%、9.8%。在49份含有不同种类矮秆基因的材料中,其中16份材料同时含有2种及以上的矮秆基因,即RhtB1b和Rht8、Rht-D1b和Rht8、Rht-B1b和Rht5、Rht-D1b和Rht5、Rht8和Rht5、Rht-B1b和Rht12、Rht5和Rht12,并未发现同时含有矮秆基因Rht-B1b和Rht-D1b的品种;2份材料分别含有3种矮秆基因,即Rht-B1b、Rht8、Rht12和Rht-B1b、Rht5、Rht8;其余31份材料仅含有1种矮秆基因。82份青海育成小麦材料中仅含有Rht-B1b的材料11份,平均株高为86.2 cm,其降秆效应为5.7%;只含有Rht-D1b的材料有5份,平均株高为84.9 cm,其降秆效应为7.1%;仅含有Rht8的材料有9份,平均株高为88.6 cm,其降秆效应为3.1%。因此,在青海育成小麦品种中,矮秆基因的降秆效应为Rht-D1bRht-B1bRht8。  相似文献   

20.
We report the fine mapping of the previously described quantitative trait loci (QTL) for grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D by using introgression lines (ILs) carrying introgressions of the synthetic wheat W-7984 in the genetic background of the German winter wheat variety ‘Prinz’. The BC4F3 ILs had a 10% increased thousand grain weight compared to the control group and the recurrent parent ‘Prinz’, and 84.7% of the phenotypic variance could be explained by the segregation of marker Xgwm1002-7D, suggesting the presence of a gene modulating grain weight, which was preliminarily designated gw1. It was possible to delimit the QTL QTgw.ipk-7D to the interval Xgwm295–Xgwm1002, which is located in the most telomeric bin 7DS4-0.61-1.00 in the physical map of wheat chromosome arm 7DS. Furthermore, our data suggest the presence of a novel plant height-reducing locus Rht on chromosome arm 7DS of ‘Prinz’. Larger grain and increased plant height may reflect the pleiotropic action of one gene or may be caused by two linked genes. In general, our data support the concept of using nearly isogenic ILs for validating and dissecting QTLs into single Mendelian genes and open the gateway for map-based cloning of a grain-weight QTL in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号