首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A study was made of the intra-and inter-population variability of the main traits involved in Trichogramma (T. brassicae and T. cacoeciae) efficiency in host exploitation: longevity, fecundity, progeny viability, progeny sex ratio and progeny allocation. The analysis of isofemale strains shows that differences in progeny viability, progeny sex ratio and progeny allocation are transmissible and relatively stable over two successive generations. Comparison of three strains of T. brassicae originating from different locations, demonstrates differences in fecundity, progeny sex ratio and progeny allocation. Differences in host exploitation strategies also exist between two sympatric populations of T. brassicae and T. cacoeciae. No significant correlation appears between the traits which discriminate populations. The ecological and evolutionary significance and the agronomical importance of the results are discussed.  相似文献   

2.
Summary Single-species cultures of D. melanogaster Oregon-R-C and D. simulans v were set up with 5, 50, 100, 200, 300 or 400 pairs of parents. These parents were discarded after 48 hours, and the numbers and wet weights of emerging progeny recorded twice daily. For each culture, the fitness components estimated were total number of progeny, total progeny biomass, average male and average female wet weights, mean developmental period, and sex ratio. D. melanogaster had higher progeny productivity and longer mean developmental period. For both species, as adult density increased, progeny number per culture increased to a maximum and then decreased, but the average number of progeny per female decreased rapidly from the lowest density. The cause of this decreased progeny number per female differed in the two species. For simulans, it was due to decreased fecundity per female, possibly a behavioural response to crowding. For melanogaster, the decreased progeny number per female was mainly due to reduced immature stage viability as a result of increased larval crowding. Reduction in fecundity per female was relatively small, as compared with simulans.  相似文献   

3.
Sexual reproduction may be advantageous for hosts that are preyed on or parasitized by enemies that are highly adapted to them. Sexual reproduction can create rare genotypes that may escape predation by virtue of rarity and can create variable progeny that may escape predation if enemies are specialized to only one genotype of host. Populations of the herbivorous thrips, Apterothrips apteris, have been shown to be adapted to individual Erigeron glaucus clones. Here, we show that thrips adapted to the parental clone could better use plant progeny of the “home” clone produced through selfing than progeny derived from selfing of other clones. Thus, despite recombination, progeny produced by selfing presented a resource that was similar to the parental phenotype with respect to use by adapted thrips. We also show that E. glaucus susceptibility to thrips has a genetic basis and then ask whether outcrossing provides a means for E. glaucus clones to escape attack by adapted thrips. When we compared the success of thrips on progeny produced by selfing or outcrossing of the home clone, we found that the merits or disadvantages associated with outcrossing were dependent on the susceptibility to infestation of the parental clones. Selfing by clones characterized by low infestations of thrips appeared to preserve resistant genotypes; all outcrossed progeny had, on average, higher infestation levels than selfed progeny. In contrast, outcrossed progeny of clones characterized by high infestations of thrips had either the same thrips density as progeny from selfing, when the pollen donor was a highly infested clone, or lower density, when the pollen donor was a low infestation clone. The advantages of outcrossing were caused by the alleles contributed to progeny rather than to progeny variability or rarity.  相似文献   

4.
The consequences of inbreeding for reproductive traits were investigated for two closely related annual lupines that differ in their mating system. Lupinus bicolor (Leguminosae) is a primarily selling species while Lupinus nanus outcrosses at intermediate rates. A controlled crossing program was used for each species to produce selfed and outcrossed progeny. These progeny were then grown in a greenhouse and scored for the date of first flower, flower morphology, and autofertility. Selfed progeny of L. bicolor produced significantly smaller flowers but did not differ from outcrossed progeny for the remaining traits. Selfed progeny of L. nanus produced flowers that significantly differed in shape and had fewer ovules than the flowers of outcrossed progeny. Selfed progeny of L. nanus also had significantly lower rates of autofertility in comparison to outcrossed progeny. The significant effects of inbreeding on these mating system traits may indicate the presence of directional dominance at the loci underlying these characters. The consequences of these direct effects of inbreeding on reproductive traits for plants growing in natural populations may include nonadaptive changes in the outcrossing rate between generations.  相似文献   

5.
 Pedigree and DNA marker-based methods were used to predict the performance of triploid progeny from tetraploid-diploid crosses, based on parental heterozygosity, genetic relatedness, and expected contribution to their progeny. There was no significant correlation between parental and progeny performance. Prediction of progeny bunch weight was best when based on genealogical distance and equal parental contribution. Predicted fruit size was most accurate when DNA marker data were used and the assumption of an unequal parental contribution was made. Consideration of parental heterozygosity produced larger residuals for all traits. No statistically significant differences were found between the mean residuals obtained under the assumption of an equal vs an unequal contribution of the 4x and 2x genotypes to their 3x progeny, regardless of the method used to estimate genetic relationships. Received: 29 October 1997 / Accepted: 14 July 1998  相似文献   

6.
The present study describes key aspects of the biology of Leipothrix dipsacivagus, an eriophyid mite that is under study as a biological control candidate of Dipsacus fullonum and D. laciniatus (Dipsacaceae). Preliminary host-specificity tests have shown that it can develop and reproduce only on Dipsacus spp. (teasels). Studies were conducted in a laboratory at 26 ± 2oC with 16 h of light per day. Mites for the stock colony were collected from D. laciniatus in Klokotnitsa, Bulgaria and reared on rosettes of D. laciniatus in the laboratory. Unfertilized L. dipsacivagus females reared in isolation from the juvenile stage produced male offspring only, while progeny of fertilized females were of both sexes, suggesting arrhenotokous parthenogenesis with haplodiploid sex determination. Experiments were designed to compare male progeny from fertilized females to males from unfertilized females and to compare males and females from fertilized females. Male progeny of virgin mothers had significantly longer durations of active immature stages and total egg-to-adult period than male progeny of fertilized females. Female progeny had significantly longer durations of egg incubation, active immature stages and egg-to-adult period than male progeny from fertilized mothers. Adult longevity was significantly greater in females than in males. Fertilized females produced significantly more eggs per day and overall than virgin females. The results of this study suggest that fertilization status of L. dipsacivagus females can affect both their own fecundity and the development of their male progeny.  相似文献   

7.
Genetic factors influence the populationviability of rare species, yet the fitnessconsequences of inbred and outbred progeny areseldom tested empirically in reintroductionstrategies designed for species recovery orhabitat restoration. Rare and endangeredplants of Silene (Caryophyllaceae) occuron four continents, including North America. In Oregon, inbred and outbred progeny weremonitored for three years after experimentalreintroduction of a narrow endemic, S.douglasii var. oraria, into formerlygrazed habitat within its presumed historicalrange. Survival and reproduction were comparedfor progeny that were derived from the seeds ofself- versus cross-pollinated flowersproduced in situ at Cascade Head, aUNESCO Biosphere Reserve where the largest ofthree extant populations occurs. Progeny ofcross-pollinated flowers had significantlygreater field survival in all years than didoffspring of selfed or open-pollinated flowers(P < 0.01). Outbred progeny alsosignificantly exceeded other treatment cohortsin canopy area, and produced more reproductivestems and flowers than other progeny types ofthe same maternity. For plots varying in plantdensity, mortality was greatest in thehigh-density competitive regime but thesurvivors reached significantly larger sizesand reproductive capacities than in low densityplots (P < 0.05). In all, successfulconservation plans involving reintroduction mayrequire genetically diverse progeny to offsetinbreeding depression as well as suitableplanting densities and source populations.  相似文献   

8.
1. Plants possess numerous traits that confer resistance against insect herbivores, and herbivores, in turn, can evolve traits to ameliorate the effectiveness of these traits. The pipevine swallowtail, Battus philenor, is an extreme specialist on plants in the genus Aristolochia. The only host plant available to the California population of B. philenor is A. californica. Aristolochia californica is distinct from most other B. philenor host plants in that it is pubescent. 2. The progeny of B. philenor are larger in California compared with populations examined in Texas. Size differences persist throughout larval development. 3. Regardless of maternal host plant, population differences in progeny size persist, and crosses between California (large progeny) and Texas (small progeny) B. philenor populations resulted in offspring producing intermediate sized progeny, indicating a heritable component to progeny size variation. 4. California neonate caterpillars more easily overcame the trichomes of A. californica compared with Texas neonates. When trichomes were removed from A. californica, time to feeding establishment was reduced for caterpillars from both populations. Texas caterpillars established feeding sites on A. californica with trichomes removed, in the same time required to establish feeding on their non‐pubescent host plant, A. erecta. 5. This study shows that plant trichomes might impose selection pressure on progeny size.  相似文献   

9.
1. Herbivores using seasonal resources must cope with variation in the quality of their host plants. The effects of variation in protein concentration of artificial diet and glucosinolate concentration in canola, Brassica napus, on Pieris rapae parental and progeny growth were investigated. 2. The hypothesis that parents respond to variation in food quality by altering the phenotype of their progeny to enhance progeny fitness was tested. Consistent with previous studies, P. rapae was not affected strongly by variation in the protein concentration of artificial diet and had equal mass on completing development. 3. The mass of individual eggs of P. rapae progeny was correlated negatively with the amount of protein in the diet on which parents fed. Moreover, mothers reared in extreme conditions (high and low protein) produced progeny that grew best under those conditions. These potentially adaptive parental effects were detected early in progeny growth but not later in their development. 4. Early larval growth of P. rapae was affected negatively by increasing glucosinolates in B. napus plants, although no effects of glucosinolates were detected later in growth or on the progeny's phenotype. 5. Thus, evidence is presented that variation in food quality (protein concentration) has major consequences for the progeny of P. rapae. Given the multivoltine life history of P. rapae and the seasonal differences in food quality it encounters, such parental effects may be adaptive.  相似文献   

10.
In response to emerging interest in commercial mass production of Trichogramma for Helicoverpa armigera biocontrol in eastern Africa, laboratory experiments were undertaken to assess the scope for genetic enhancement of the parasitisation potential of native strains of the local common trichogrammatid species, Trichogrammatoidea sp. nr. lutea. Four promising strains (ex-Kilifi – Kilifi District, ex-Kwa Chai – Kibwezi District, ex-Rarieda – Bondo District and ex-Ebuhayi, Kakamega District) were tested for cross-mating in reciprocal combinations with focus on fecundity and progeny female ratio. While all the crosses resulted in F1 progeny of both sexes, significant differences were observed between homogamic and reciprocal heterogamic crosses in fecundity, progeny production, proportion of female progeny and adult longevity. Among all the crosses, the cross between ex-Rarieda strain females and ex-Kilifi strain males resulted in progeny that was significantly superior in fecundity and progeny female ratio. Conversely, Kilifi strain females crossed to males from ex-Rarieda strain gave rise to progeny with relatively low fecundity and female ratio. There were significant differences between homogamic crosses and most reciprocal heterogamic crosses in the major biological attributes. Genotypic and phenotypic variance-covariance matrices generated for six life-history traits showed high positive correlations for most traits in both inbred (P<0.05) and reciprocal heterogamic crosses (P<0.05 and P<0.001). Fecundity and number of female offspring were the most important factors in the heterogamic crosses. The results confirmed the scope for genetic enhancement through inter-strain crossing for improving the field impact potential of T. sp. nr. lutea being targeted for commercial mass production.  相似文献   

11.
We evaluated the degree of selfing and inbreeding depression at the seed and seedling stages of a threatened tropical canopy tree, Neobalanocarpus heimii, using microsatellite markers. Selection resulted in an overall decrease in the level of surviving selfed progeny from seeds to established seedlings, indicating inbreeding depression during seedling establishment. Mean seed mass of selfed progeny was lower than that of outcrossed progeny. Since the smaller seeds suffered a fitness disadvantage at germination in N. heimii, the reduced seed mass of selfed progeny would be one of the determinants of the observed inbreeding depression during seedling establishment. High selfing rates in some mother trees could be attributed to low local densities of reproductive individuals, thus maintenance of a sufficiently high density of mature N. heimii should facilitate regeneration and conservation of the species.  相似文献   

12.
The aim of this study was to determine if individual ticks among the progeny of a single female Rhipicephalus (Boophilus) microplus tick removed from cattle under natural conditions are the result of mating with one or several males. To this end, simulations were run using an existing dataset of genotypes from 8 microsatellite loci to predict the number of samples required and the best locus. Subsequently, 14–22 progeny from each of 15 engorged female ticks removed from three cows, and the engorged females themselves, were genotyped for the BmM1 locus and the minimum number of potential male parents was determined for each progeny group. Of the 15 progeny groups, 10 must have been sired by more than one male, as indicated by the presence of five unique alleles among the progeny or three unique alleles that could not have been contributed by the female. This finding demonstrates multiple paternity in R. microplus.  相似文献   

13.
The consequences of selfing were examined for a population of self-compatible, protandrous, Sabatia angularis L. (Gentianaceae). Field-collected plants were hand-pollinated in the greenhouse to produce selfed progeny and outcrossed progeny from parents separated by a maximum of 5 m (near-outcross) and 85 m (far-outcross) in the field. Self, near-outcross, and far-outcross half sib progeny were grown in the greenhouse, a garden plot, and their native habitat. Progeny were compared by multiplicative fitness functions based on seed production per hand-pollination, seed germination, rosette formation, survival to reproduction, and reproduction in each environment. Variation in reproduction among progeny groups was influenced by the environment in which they were grown. Significant inbreeding depression was detected between the self and far-outcross progeny in each environment. Only the natural environment demonstrated a greater than 50% reduction in relative fitness of self compared to near-outcross progeny. This is of biological relevance since near-outcross hand-pollinations occurred within the range of pollen and seed dispersal suggesting that inbreeding depression in S. angularis is strong enough to maintain outcrossing in the study population. In the field, the far-outcross progeny outperformed the near-outcross progeny suggesting local population substructure. The magnitude of the inbreeding depression expressed among the self progeny was the greatest in the field, intermediate in the garden plot, and the least in the greenhouse.  相似文献   

14.
We studied fourteen morphological attributes of 511 seedling stage progeny involving crosses between Pinus ponderosa ponderosa parents as well as intervarietal crosses of P. p. ponderosa × P. p. scopulorum. Intravarietal progeny were distinctly differentiated genetically from intervarietal sibships in seven of the fourteen characters examined. The patterns of differentiation observed strongly suggest a syndrome of selective responses to increased water stress in the progeny with a scopulorum parent and for comparatively more rapid, columnar growth in the progeny of the intravariety crosses which involved only P. p. ponderosa parents. These differences are consistent with known ecological distinctions between the habitats of the two varieties. Narrow-sense heritability estimates, obtained from half-sib progeny analysis, indicated that considerable levels of additive genetic variance remain present in several traits. We could detect no relationship between the amount of additive genetic variance present for a particular character and its presumed relevance to fitness.  相似文献   

15.
Magnaporthe grisea causes rice blast, the most important fungal disease of rice. The segregation of genes controlling virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in this host-parasite interaction. Full-sib progeny and parent isolates Guy11 and 2539 of M. grisea were inoculated onto rice (Oryza sativa) cultivar CO39 and five near-isogenic lines (NILs) of CO39. Each NIL contained a different single gene affecting resistance to specific isolates of M. grisea. No differential interactions between NILs and progeny or parents were observed; parents and progeny pathogenic on CO39 were pathogenic on all five NILs. Segregation ratios of 101 full-sib progeny, 117 progeny from full-sib parents, and 109 backcross progeny, indicated a common single gene affecting pathogenicity on CO39 and the five NILs. A subset of the above 327 isolates (43 fullsib progeny, 37 progeny from full-sib parents, and 32 backcross progeny) were inoculated onto rice cultivar 51583; all were pathogenic, indicating that cultivar specificity to CO39 was segregating in this population of isolates. The locus controlling cultivar specificity, named avrCO39, was mapped to chromosome 1 using a subset of the progeny previously used to construct an RFLP map of M. grisea. The closest reported RFLP markers were 11.8 (estimated 260 kb) and 17.2 cM (estimated 380 kb) away and provide starting points on either side of the locus for a chromosome walk to clone the locus.  相似文献   

16.
We transformed wild-type Neurospora crassa with hph gene encoding hygromycin phosphotransferase to obtain hygromycin-resistant (HygR) transformants and studied their behavior in the vegetative and sexual phases of growth. During vegetative growth in the absence of hygromycin, the hph gene was stable for at least three successive transfers with conidia. On the other hand, the behavior of the transformants in the sexual phase was different. The segregation of hph gene in the meiotic progeny was in accordance with the Mendelian ratio as inferred from PCR analysis. However, in spite of inheriting the hph gene, a proportion of the meiotic progeny failed to grow in the presence of hygromycin. This suggested that the hph gene is silenced in some progeny. The silencing effect was not confined to hph gene expression, since one-half of the meiotic progeny also showed poor conidiation. Genomic Southern analysis indicated deletions/rearrangements of the transgene in the progeny. A heterokaryon between silenced and non-silenced strains was able to grow on hygromycin-containing medium, showing that silencing was recessive. Silencing was reversed in homokaryotic nuclei extracted from such heterokaryon.Received: 2 October 2002 / Accepted: 4 November 2002  相似文献   

17.
Summary The genomic distribution and genetic behavior of DNA sequences introduced into the tomato genome by Agrobacterium tumefaciens were investigated in the backcross progeny of 10 transformed Lycopersicon esculentum x L. pennellii hybrids. All transformants were found to represent single locus insertions based on the co-segregation of restriction fragments corresponding to the T-DNA left and right border sequences in the backcross progeny. Isozyme and restriction fragment length polymorphism (RFLP) markers were used to test linkage relationships of the insertion in each backcross family. The T-DNA inserts in 9 of the 10 transformants were mapped in relation to one or more of these markers, and each mapped to a different chromosomal location. Because only one insertion did not show linkage with the markers employed, it must be located somewhere other than the genomic regions covered by the markers assayed. We conclude that Agrobacterium-mediated insertion in the Lycopersicon genome appears to be random at the chromosomal level. No discrepancies were found between the T-DNA genotype and the nopaline phenotype in the 322 backcross progeny of the nopaline positive transformants. Backcross progeny of two nopaline negative transformants showed incomplete correspondence between the T-DNA genotype and the kanamycin resistance phenotype. No alteration of T-DNA was observed in progeny showing a discrepancy between T-DNA and kanamycin resistance. However, two kanamycin resistant progeny plants of one of these two transformants possessed altered T-DNA restriction patterns, indicating genetic instability of the T-DNA in this transformant.Journal article no. 1223 of the New Mexico Agricultural Experiment Station  相似文献   

18.
The polymerase chain reaction with arbitrary primers (RAPD–PCR) was used to study and to evaluate the genetic variation in the hybrid progeny of two Cyprinidae species, common bream Abramis brama L. and roach Rutilus rutilusL. Genetic polymorphism was studied in 20 fishes (young of the current year) obtained in four individual crosses: R. rutilus × R. rutilus (RR), A. brama × A. brama (AA), R. rutilus × A. brama (RA), and A. brama × R. rutilus (AR). Amplification spectra obtained with eight primers contained 288 fragments, 97.6% of which proved to be polymorphic. The proportion of polymorphic fragments was 75.0% in the RR progeny, 58.1% in the AA progeny, 84.9% in the AR progeny, and 77.8% in the RA progeny. Classification analysis in the space of principal components was performed with the first four components, which together accounted for 64% of the total variance of the character under study. The individual contributions of components I, II, III, and IV were 26.8, 16.8, 11.5, and 8.9%, respectively. Fishes of the two pure species and the hybrid progeny (direct and reverse hybrids together) were clearly differentiated in the space of principal components I and II. The best differentiation of the four samples (RR, AA, RA, and AR) was observed in the space of principal components II and IV. Possible causes of high genetic variation in interspecific hybrids are discussed.  相似文献   

19.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

20.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号