首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rp1 region of maize was originally characterized as a complex locus which conditions resistance to the fungus Puccinia sorghi, the causal organism in the common rust disease. Some alleles of Rp1 are meiotically unstable, but the mechanism of instability is not known. We have studied the role of recombination in meiotic instability in maize lines homozygous for either Rp1-J or Rp1-G. Test cross progenies derived from a line that was homozygous for Rp1-J, but heterozygous at flanking markers, were screened for susceptible individuals. Five susceptible individuals were derived from 9772 progeny. All five had nonparental combinations of flanking markers; three had one combination of recombinant flanking markers while the other two had the opposite pair. In an identical study with Rp1-G, 20 susceptible seedlings were detected out of 5874 test cross progeny. Nineteen of these were associated with flanking marker exchange, 11 and 8 of each recombinant marker combination. Our results indicate that unequal exchange is the primary mechanism of meiotic instability of Rp1-J and Rp1-G.  相似文献   

2.
The Rp3 locus of maize conditions race-specific resistance to a fungal rust pathogen, Puccinia sorghi. Both morphological and DNA markers were employed to characterize alleles of Rp3 and to accurately position Rp3 on the maize genetic map. DNA marker polymorphisms distinctive to each Rp3 allele were identified, allowing the identification of specific Rp3 alleles in cases where rust races that differentiate particular alleles are not available. In a population of 427 progeny, Rp3 and Rg1 were found to be completely linked, while Lg3 was approximately 3 cM proximal on the long arm of chromosome 3. In this same population, 12 RFLP markers were mapped relative to Rp3; the closest markers were UMC102 (about 1cM distal to Rp1) and NPI114 (1–2 cM proximal). These and additional DNA probes were used to characterize the nature and extent of flanking DNA that was carried along when six different Rp3 alleles were backcrossed into a single background. Depending upon the allele investigated, a minimum of 2–10cM of polymorphic DNA flanking the Rp3 locus was retained through the introgression process. In addition, many of the probes that map near Rp3 were found to detect an additional fragment in the Rp3 region, indicating that portions of this chromosomal segment have been tendemly duplicated. The materials and results generated will permit marker-assisted entry of Rp3 into different maize backgrounds and lay the foundation for the eventual map-based cloning of Rp3.  相似文献   

3.
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class ( Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue ( Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.  相似文献   

4.
Rp1 is a disease resistance complex and is the terminal morphological marker on the short arm of maize chromosome 10. Several restriction fragment length polymorphisms (RFLPs), which map within 5 map units of Rp1, were examined to determine if they are also complex in structure. Two RFLP loci, which mapped distally to Rp1, BNL3.04 and PIO200075, existed in a single copy in all maize lines examined. These two loci cosegregated perfectly in 130 test cross progeny. Two RFLP loci that map proximally to Rp1 had unusual structures, which have not yet been reported for maize RFLPs; the loci were complex, with variable numbers of copies in different maize lines. One of the loci, NPI285, occasionally recombined in meiosis to yield changes in the number of copies of sequences homologous to the probe. The other proximal locus, detected by the probes NPI422, KSU3, and KSU4, was relatively stable in meiosis and no changes in the number of restriction fragments were observed. The similarity in map position between Rp1 and the complex RFLP loci indicate there may be genomic areas where variable numbers of repeated sequences are common. The structure of these complex loci may provide insight into the structure and evolution of Rp1.  相似文献   

5.
A novel locus for potato resistance to potato leafroll virus (PLRV) was characterized by inheritance studies and molecular mapping. The diploid parental clone DW 91-1187 was resistant to PLRV accumulation in both inoculated plants and their tuber progeny. The resistance to PLRV accumulation present in DW 91-1187 was not transmitted to any F1 offspring when crossed with a PLRV susceptible clone. Instead, one half of the F1 individuals exhibited undetectable amounts of PLRV as determined by ELISA during the primary infection assay, but accumulated PLRV in their tuber progeny plants. The other half was clearly infected both in the inoculated and tuber-born plants. The inheritance of resistance to PLRV accumulation may be explained by a model of two complementary alleles of a single gene (PLRV.4) or by two complementary genes that are closely linked in repulsion phase. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers linked to the PLRV.4 locus were selected. The two complementary factors were closely linked in coupling phase to the alternative alleles UBC864600 and UBC864800 of DNA marker UBC864. These markers may be used for marker-assisted selection of genotypes having both factors for resistance to PLRV accumulation. The PLRV.4 locus was mapped to a central position on linkage group XI of the potato molecular map, where no resistance locus has been mapped previously.  相似文献   

6.
Summary A major dominant locus conferring resistance against several pathotypes of the root cyst nematode Globodera rostochiensis was mapped on the linkage map of potato using restriction fragment length polymorphism (RFLP) markers. The assessment of resistance versus susceptibility of the plants in the experimental population considered was based on an in vivo (pot) and an in vitro (petri dish) test. By linkage to nine RFLP markers the resistance locus Gro1 was assigned to the potato linkage group IX which is homologous to the tomato linkage group 7. Deviations from the additivity of recombination frequencies between Gro1 and its neighbouring markers in the pot test led to the detection of a few phenotypic misclassifications of small plants with poor root systems that limited the observation of cysts on susceptible roots. Pooled data from both tests provided better estimates of recombination frequencies in the linkage interval defined by the markers flanking the resistance locus.  相似文献   

7.
Mapping quantitative trait loci using molecular marker linkage maps   总被引:6,自引:0,他引:6  
Summary High-density restriction fragment length polymorphism (RFLP) and allozyme linkage maps have been developed in several plant species. These maps make it technically feasible to map quantitative trait loci (QTL) using methods based on flanking marker genetic models. In this paper, we describe flanking marker models for doubled haploid (DH), recombinant inbred (RI), backcross (BC), F1 testcross (F1TC), DH testcross (DHTC), recombinant inbred testcross (RITC), F2, and F3 progeny. These models are functions of the means of quantitative trait locus genotypes and recombination frequencies between marker and quantitative trait loci. In addition to the genetic models, we describe maximum likelihood methods for estimating these parameters using linear, nonlinear, and univariate or multivariate normal distribution mixture models. We defined recombination frequency estimators for backcross and F2 progeny group genetic models using the parameters of linear models. In addition, we found a genetically unbiased estimator of the QTL heterozygote mean using a linear function of marker means. In nonlinear models, recombination frequencies are estimated less efficiently than the means of quantitative trait locus genotypes. Recombination frequency estimation efficiency decreases as the distance between markers decreases, because the number of progeny in recombinant marker classes decreases. Mean estimation efficiency is nearly equal for these methods.  相似文献   

8.
Hordeum bulbosum represents the secondary gene pool of barley and constitutes a potential source of various disease resistances in barley breeding. Interspecific crosses of H. vulgare × H. bulbosum resulted in recombinant diploid-barley progeny with immunity to BaMMV after mechanical inoculation. Tests on fields contaminated with different viruses demonstrated that resistance was effective against all European viruses of the soil-borne virus complex (BaMMV, BaYMV-1, -2). Genetic analysis revealed that resistance was dominantly inherited. Marker analysis in a F5 mapping family was performed to map the introgression in the barley genome and to estimate its size after several rounds of recombination. RFLP anchor-marker alleles indicative of an H. bulbosum introgression were found to cover an interval 2.9 cM in length on chromosome 6HS. The soil-borne virus resistance locus harboured by this introgressed segment was designated Rym14Hb. For marker-assisted selection of Rym14Hb carriers, a diagnostic codominant STS marker was derived from an AFLP fragment amplified from leaf cDNA of homozygous-resistant genotypes inoculated with BaMMV.Communicated by F. Salamini  相似文献   

9.
The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. Finkers-Tomczak and S. Danan contributed equally to this research.  相似文献   

10.
We present a detailed analysis of linkage disequilibrium (LD) in the physical and genetic context of the barley gene Hv-eIF4E, which confers resistance to the barley yellow mosaic virus (BYMV) complex. Eighty-three SNPs distributed over 132 kb of Hv-eIF4E and six additional fragments genetically mapped to its flanking region were used to derive haplotypes from 131 accessions. Three haplogroups were recognized, discriminating between the alleles rym4 and rym5, which each encode for a spectrum of resistance to BYMV. With increasing map distance, haplotypes of susceptible genotypes displayed diverse patterns driven mainly by recombination, whereas haplotype diversity within the subgroups of resistant genotypes was limited. We conclude that the breakdown of LD within 1 cM of the resistance gene was generated mainly by susceptible genotypes. Despite the LD decay, a significant association between haplotype and resistance to BYMV was detected up to a distance of 5.5 cM from the resistance gene. The LD pattern and the haplotype structure of the target chromosomal region are the result of interplay between low recombination and recent breeding history.  相似文献   

11.
A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia ‘Magnolia’. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in ‘Magnolia’ from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The ‘Magnolia’ resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia ‘Trayshed’. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the ‘Magnolia’-based populations, but the allele sizes of the flanking markers were different. ‘Trayshed’ and ‘Magnolia’ shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line.  相似文献   

12.
Development of resistant papaya varieties is widely considered the best strategy for long-term control of the papaya ringspot virus type P (PRSV-P). Several species of “highland papaya” from the related genus Vasconcellea exhibit complete resistance to PRSV-P, and present a valuable source of resistance genes with potential for application in Carica papaya. The objectives of this study were two fold; to identify molecular markers linked to a previously characterised PRSV-P resistance gene in V. cundinamarcensis (psrv-1), and to develop codominant marker based strategies for reliable selection of PRSV-P resistant genotypes. Using a bulked segregant analysis approach, dominant randomly amplified DNA fingerprint (RAF) markers linked to prsv-1 were revealed in the resistant DNA bulk, which comprised F2 progeny from a V. parviflora (susceptible) × V. cundinamarcensis (resistant) interspecific cross. One marker, Opk4_1r, mapped adjacent to the prsv-1 locus at 5.4 cM, while a second, Opa11_5r, collocated with it. Sequence characterisation of the Opk4_1r marker permitted its conversion into a codominant CAPS marker (PsiIk4), diagnostic for the resistant genotype based on digestion with the restriction endonuclease PsiI. This marker mapped within 2 cM of the prsv-1 locus. Psilk4 was shown to correctly identify resistant genotypes 99% of the time when applied to interspecific F2 progeny segregating for the resistant character, and has potential for application in breeding programs aimed to deliver the PRSV-P resistance gene from V. cundinamarcensis into C. papaya.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
The R10 and R11 late blight differentials of Black (tetraploid clones 3681ad1 and 5008ab6) were crossed with the susceptible potato (Solanum tuberosum) cultivar Maris Piper and the progeny were assessed for blight resistance in a whole plant glasshouse test using race 1,2,3,4,6,7 of Phytophthora infestans. The disease scores for the R10 population displayed a continuous distribution whereas the progeny in the R11 population could be categorised as resistant or susceptible. A bulk segregant analysis using amplified fragment length polymorphism assays was done on the ten most resistant and ten most susceptible progeny in each population and two closely linked markers were found to be associated with resistance. R11 mapped to 8.5 cM from marker PAG/MAAG_172.3 and R10 mapped as a quantitative trait locus in which marker PAC/MATC_264.1 explained 56.9% of the variation in disease scores. The results were consistent with R10 and R11 being allelic versions of genes at the R3 locus on chromosome 11. The implications are discussed for mapping R-genes which fail to give complete immunity to a pathogen.  相似文献   

14.
Ryegrass blast, also called gray leaf spot, is caused by the fungus Pyricularia sp. It is one of the most serious diseases of Italian ryegrass (Lolium multiflorum Lam.) in Japan. We analyzed segregation of resistance in an F1 population from a cross between a resistant and a susceptible cultivar. The disease severity distribution in the F1 population suggested that resistance was controlled by a major gene (LmPi1). Analysis of amplified fragment length polymorphisms with bulked segregant analysis identified several markers tightly linked to LmPi1. To identify other markers linked to LmPi1, we used expressed sequence tag-cleaved amplified polymorphic sequence (EST-CAPS) markers mapped in a reference population of Italian ryegrass. Of the 30 EST-CAPS markers screened, one marker, p56, flanking the LmPi1 locus was found. The restriction pattern of p56 amplification showed a unique fragment corresponding to the resistant allele at the LmPi1 locus. A linkage map constructed from the reference population showed that the LmPi1 locus was located in linkage group 5 of Italian ryegrass. Genotype results obtained from resistant and susceptible cultivars indicate that the p56 marker is useful for introduction of the LmPi1 gene into susceptible germplasm in order to develop ryegrass cultivars with enhanced resistance to ryegrass blast.  相似文献   

15.
ALR mice are closely related to type-1 diabetes mellitus (T1DM)-prone NOD mice. The ALR genome confers systemically elevated free radical defenses, dominantly protecting their pancreatic islets from free radical generating toxins, cytotoxic cytokines, and diabetogenic T cells. The ALR major histocompatibility complex (MHC) (H2gx haplotype) is largely, but not completely identical with the NOD H2g7 haplotype, sharing alleles from H2-K through the class II and distally into the class III region. This same H2gx haplotype in the related CTS strain was linked to the Idd16 resistance locus. In the present study, ALR was outcrossed to NOD to fine map the Idd16 locus and establish chromosomal regions carrying other ALR non-MHC-linked resistance loci. To this end, 120 (NOD×ALR)×NOD backcross progeny females were monitored for T1DM and genetic linkage analysis was performed on all progeny using 88 markers covering all chromosomes. Glucosuria or end-stage insulitis developed in 32 females, while 88 remained both aglucosuria and insulitis free. Three ALR-derived resistance loci segregated. As expected, one mapped to Chromosome 17, with peak linkage mapping just proximal to H2-K. A novel resistance locus mapped to Chr 8. A pairwise scan for interactions detected a significant interaction between the loci on Chr 8 and Chr 17. On Chr 3, resistance segregated with a marker between previously described Idd loci and coinciding with an independently mapped locus conferring a suppressed superoxide burst by ALR neutrophils (Susp). These results indicate that the Idd16 resistance allele, defined originally by linkage to the H2gx haplotype of CTS, is immediately proximal to H2-K. Two additional ALR-contributed resistance loci may be ALR-specific and contribute to this strain's ability to dissipate free-radical stress.  相似文献   

16.
Anthracnose, caused by Colletotrichum gloeosporioides, is the most severe foliar disease of water yam (Dioscorea alata) worldwide. The tetraploid breeding line, TDa 95/00328, is a source of dominant genetic resistance to the moderately virulent fast growing salmon (FGS) strain of C. gloeosporioides. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to anthracnose resistance in F1 progeny derived from a cross between TDa 95/00328 and the susceptible male parent, TDa 95–310. Two hundred and eighty decamer primers were screened using bulks obtained from pooled DNA of individuals comprising each extreme of the disease phenotype distribution. A single locus that contributes to anthracnose resistance in TDa 95/00328 was identified and tentatively named Dcg‐1. We found two RAPD markers closely linked in coupling phase with Dcg‐1, named OPI71700 and OPE6950, both of which were mapped on the same linkage group. OPI71700 appeared tightly linked to the Dcg‐1 locus; it was present in all the 58 resistant F1 individuals and absent in all but one of the 13 susceptible genotypes (genetic distance of 2.3 cM). OPE6950 was present in 56 of the 58 resistant progeny and only one susceptible F1 plant showed this marker (6.8 cM). Both markers successfully identified Dcg‐1 in resistant D. alata genotypes among 34 breeding lines, indicating their potential for use in marker‐assisted selection. OPI71700 and OPE6950 are the first DNA markers for yam anthracnose resistance. The use of molecular markers presents a valuable strategy for selection and pyramiding of anthracnose resistance genes in yam improvement.  相似文献   

17.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

18.
Summary Chloroplast gene mutations which confer antibiotic resistance on chloroplast ribosomes of the green alga Chlamydomonas reinhardtii have been tested for allelism and mapped by recombination analysis of progeny from biparental zygote clones. Thirty-one independently isolated streptomycin resistant mutants have chloroplast ribosomes which are resistant to this drug in an assay based on misreading of isoleucine in response to a poly U template, and comprise one nuclear and four chloroplast gene loci. Four mutants resistant to spectinomycin, and three mutants resistant to neamine and kanamycin, which have chloroplast ribosomes resistant to their respective antibiotics in poly U directed phenylalanine incorporation, appear to map in a single chloroplast gene locus. Representative alleles of this nr/spr locus, the four streptomycin resistance loci, and two chloroplast gene loci for erythromycin resistance, have been analyzed in a series of parallel crosses to establish the following map order for these seven genes in the chloroplast genome: er-u-la-er-u-37-nr-u-2-1/spr-u-1-H-4-sr-u-2-23-sr-u-2-60-sr-u-sm3-sr-u-sm2. These seven genes may constitute a ribosomal region within the chloroplast genome of Chlamydomonas comparable to the ribosomal gene clusters in bacteria.  相似文献   

19.
Meloidogyne fallax is an emerging pest in Europe and represents a threat for potato production. We report the mapping of genetic factors controlling a quantitative resistance against M. fallax identified in the Solanum sparsipilum genotype 88S.329.15. When infected, this genotype develops a necrotic reaction at the feeding site of the juveniles and totally prevents their development to the female stage. A “F1” diploid progeny consisting of 128 individuals was obtained using the potato (S. tuberosum) dihaploid genotype BF15 H1 as female progenitor. Sixty-eight hybrid genotypes displayed necrosis at the feeding site of the juveniles and 60 other genotypes showed no defence reaction. This suggested a monogenic control of the resistance. However, when considering the number of nematode females developed in their roots, a continuous distribution was observed for both “necrotic” and “non-necrotic” hybrid genotypes, indicating a polygenic control of the resistance. A linkage map of each parental genotype was constructed using AFLP markers. The necrotic reaction (NR) was mapped as a qualitative trait on chromosome XII of the resistant genotype 88S.329.15. Quantitative trait locus (QTL) analysis for the number of nematode females developed per “F1” plant genotype was performed using the QTL cartographer software. No QTL was detected on the linkage map of the susceptible parent. A QTL explaining 94.5% of the phenotypic variation was mapped on chromosome XII of the resistant progenitor. This QTL, named MfaXIIspl, was mapped in a genomic region collinear to the map position of the Mi-3 gene conferring resistance to Meloidogyne incognita in tomato. It corresponds to the NR locus.  相似文献   

20.
An amplified fragment length polymorphism (AFLP) linkage map for coastal Douglas-fir (Pseudotsuga menziesii) was constructed from eight full-sib families each consisting of 40 progeny. These families were part of the British Columbia Ministry of Forests second-generation progeny test program and represent typical family sizes used in progeny trials. For map construction, ten primer pairs using EcoRI+3 and MseI+4 were employed to identify and assay AFLP loci that segregated in backcross configurations. A new technique was used to obtain a single recombination rate for each pair of marker loci: for each locus pair, a recombination rate and log-odd value were estimated across all segregating families using a joint maximum likelihood function that considered the full dataset of segregating genotypes. The resulting matrix of recombination rates between all pairs of loci was used to construct an integrated linkage map using JoinMap. The final map consisted of 19 linkage groups spanning 938.6 cM at an average distance of 9.3 cM between markers. The simultaneous integration of data from multiple families may provide an effective way to construct a linkage map, using the genetic resources inherent in most tree improvement programs, where progeny tests of small size are conducted. The statistical property of number of families used is briefly discussed. For our data, at least three to four families greatly increased the chance of obtaining an informative locus in at least one family. Families as small as ten are adequate for closely linked loci (<10 cM), while the size used in our study (40) is adequate for loci within 30 cM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号