首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tropomyosin kinase is partially purified from 14-day-old chicken embryos using DEAE-cellulose, cellulose phosphate and gel filtration chromatography. The purest enzyme preparation consists of two major bands of Mr = 76,000 and 43,000 on SDS-polyacrylamide gel electrophoresis. The molecular weight of the enzyme is 250,000 determined by gel filtration chromatography. It phosphorylates casein and skeletal tropomyosin equally well but histone and phosvitin at a much slower rate. Smooth muscle myosin light chain, tropomyosin from platelet, erythrocyte and smooth muscle are not phosphorylated. The apparent Km for skeletal alpha-tropomyosin and ATP is 50 microM and 200 microM, respectively. Vmax varies between 100-300 nmol/min per mg depending on the purity of the preparation. Mg2+ and dithiothreitol are essential for activity but Ca+, calmodulin and cAMP are not required. The optimum temperature is 37 degrees C and optimum pH is about 7.5. Heparin, a potent inhibitor of casein kinase II, has no inhibitory effect on the enzyme. Similar tropomyosin kinase activity is not detected in skeletal muscle in adult rabbit and chicken. The tropomyosin kinase described here represents a hitherto uncharacterized kinase responsible for phosphorylation of tropomyosin in the chicken embryo.  相似文献   

2.
A casein kinase was highly purified from rabbit skeletal muscle whose substrate specificity and enzymatic properties were virtually identical to those of casein kinase-I from rabbit reticulocytes. Prolonged incubation of glycogen synthase with high concentrations of skeletal muscle casein kinase-I and Mg-ATP resulted in the incorporation of greater than 6 mol phosphate/mol subunit and decreased the activity ratio (+/- glucose-6P) from 0.8 to less than 0.02. The sites phosphorylated by casein kinase-I were all located in the N and C-terminal cyanogen bromide peptides, termed CB-1 and CB-2. At an incorporation of 6 mol phosphate/mol subunit, approximately equal to 2 mol/mol was present in CB-1 and approximately equal to 4 mol/mol in CB-2. Within CB-1, casein kinase-I phosphorylated the serines that were 3, 7 and 10 residues from the N-terminus of glycogen synthase, with minor phosphorylation at threonine-5. Within CB-2, approximately equal to 90% of the phosphate incorporated was located between residues 28 and 53, and at least five of the seven serine residues in this region were phosphorylated. The remaining 10% of phosphate incorporated into CB-2 was located between residues 98 and 123, mainly at a serine residue(s). Two of the major sites labelled by casein kinase-I (serine-3 and serine-10 of CB-1) are not phosphorylated by any other protein kinase. This will enable the role of casein kinase-I as a glycogen synthase kinase in vivo to be evaluated.  相似文献   

3.
The phosphorylation of rabbit skeletal muscle glycogen synthase by casein kinase I is markedly enhanced if the enzyme has previously been phosphorylated by cAMP-dependent protein kinase. The presence of phosphate in the primary cAMP-dependent protein kinase sites, sites 1a, 1b, and 2 (serine 7), increases the activity of casein kinase I toward residues in the vicinity of these sites. This synergistic phosphorylation correlates with potent inactivation of the glycogen synthase. Analysis of the NH2 terminus of the enzyme subunit indicated that phosphorylation at serine 7 caused serine 10 to become a preferred casein kinase I site and that phosphoserine can be an important recognition determinant for casein kinase I. This finding can also explain how epinephrine stimulation of skeletal muscle provokes significant increases in the phosphorylation state of serine residues, in particular serine 10, not recognized by cAMP-dependent protein kinase.  相似文献   

4.
Adult rat fast-twitch skeletal muscle such as extensor digitorum longus contains alpha- and beta-tropomyosin subunits, as is the case in the corresponding muscles of rabbit. Adult rat soleus muscle contains beta-, gamma- and delta-tropomyosins, but no significant amounts of alpha-tropomyosin. Evidence for the presence of phosphorylated forms of at least three of the four tropomyosin subunit isoforms was obtained, particularly in developing muscle. Immediately after birth alpha- and beta-tropomyosins were the major components of skeletal muscle, in both fast-twitch and slow-twitch muscles. Differentiation into slow-twitch skeletal muscles was accompanied by a fall in the amount of alpha-tropomyosin subunit and its replacement with gamma- and delta-subunits. After denervation and during regeneration after injury, the tropomyosin composition of slow-twitch skeletal muscle changed to that associated with fast-twitch muscle. Thyroidectomy slowed down the changes in tropomyosin composition resulting from the denervation of soleus muscle. The results suggest that the 'ground state' of tropomyosin-gene expression in the skeletal muscle gives rise to alpha- and beta-tropomyosin subunits. Innervation by a 'slow-twitch' nerve is essential for the expression of the genes controlling gamma- and delta-subunits. There appears to be reciprocal relationship between expression of the gene controlling the synthesis of alpha-tropomyosin and those controlling the synthesis of gamma- and delta-tropomyosin subunits.  相似文献   

5.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. On electrophoresis in dissociating conditions the tropomyosins isolated from skeletal muscles of mammalian, avian and amphibian species migrated as two components. These were comparable with the alpha and beta subunits of tropomyosin present in rabbit skeletal muscle. 2. The alpha and beta components of all skeletal-muscle tropomyosins contained 1 and 2 residues of cysteine per 34000g respectively. 3. The ratio of the amounts of alpha and beta subunit present in skeletal muscle tropomyosins was characteristic for the muscle type. Muscle consisting of slow red fibres contained a greater proportion of beta-tropomyosin than muscles consisting predominantly of white fast fibres. 4. Mammalian and avian cardiac muscle tropomyosins consisted of alpha-tropomyosin only. 5. Mammalian and avian smooth-muscle tropomyosins differed both chemically and immunologically from striated-muscle tropomyosins. 6. Antibody raised against rabbit skeletal alpha-tropomyosin was species non-specific, reacting with all other striated muscle alpha-tropomyosin subunits tested. 7. Antibody raised against rabbit skeletal beta-tropomyosin subunit was species-specific.  相似文献   

7.
The alpha subunit of skeletal muscle phosphorylase kinase, as isolated, carries phosphate at the serine residues 1018, 1020 and 1023. Employing the S-ethyl-cysteine method, these residues are found to be phosphorylated partially, i.e. differently phosphorylated species exist in muscle. Serine 1018 is a site which can be phosphorylated by the cyclic-AMP-dependent protein kinase. The serine residues 972, 985 and 1007 are phosphorylated by phosphorylase kinase itself when its activity is stimulated by micromolar concentrations of Ca2+. These phosphorylation sites are not identical to those found to be phosphorylated already in the enzyme as prepared from freshly excised muscle. A 'multiphosphorylation loop' uniquely present in this but not in the homologous beta subunit contains all the phosphoserine residues so far identified in the alpha subunit.  相似文献   

8.
We isolated a cDNA clone from the tumorigenic human fibroblast cell line HuT-14 that contains the entire protein coding region of tropomyosin isoform 3 (Tm3) and 781 base pairs of 5'- and 3'-untranslated sequences. Tm3, despite its apparent smaller molecular weight than Tm1 in two-dimensional gels, has the same peptide length as Tm1 (284 amino acids) and shares 83% homology with Tm1. Tm3 cDNA hybridized to an abundant mRNA of 1.3 kilobases in fetal muscle and cardiac muscle, suggesting that Tm3 is related to an alpha fast-tropomyosin. The first 188 amino acids of Tm3 are identical to those of rat or rabbit skeletal muscle alpha-tropomyosin, and the last 71 amino acids differ from those of rat smooth muscle alpha-tropomyosin by only 1 residue. Tm3 therefore appears to be encoded by the same gene that encodes the fast skeletal muscle alpha-tropomyosin and the smooth muscle alpha-tropomyosin via an alternative RNA-splicing mechanism. In contrast to Tm4 and Tm5, Tm3 has a small gene family, with, at best, only one pseudogene.  相似文献   

9.
We have selected tropomyosin subunits and myosin light chains as representative markers of the myofibrillar proteins of the thin and thick filaments and have studied changes in the type of proteins present during development in chicken and rabbit striated muscles. The β subunit of tropomyosin is the major species found in all embryonic skeletal muscles studied. During development the proportion of the α subunit of tropomyosin gradually increases so that in adult skeletal muscles the α subunit is either the only or the major species present. In contrast, cardiac muscles of both chicken and rabbit contain only the α subunit which remains invariant with development. Two subspecies of the α subunit of tropomyosin which differ in charge only were found in adult and embryonic chicken skeletal muscles. Only one of these subspecies seems to be common to chicken cardiac tropomyosin. With respect to myosin light chains, embryonic skeletal fast muscle myosin of both species resembles the adult fast muscle myosin except that the LC3 light chain characteristic of the adult skeletal fast muscle is present in smaller amounts. The significance of these isozymic changes in the two myofibrillar proteins is discussed in terms of a model of differential gene expression during development of chicken and rabbit skeletal muscles.  相似文献   

10.
Amino acid sequence of chicken gizzard gamma-tropomyosin   总被引:7,自引:0,他引:7  
Chicken gizzard muscle tropomyosin has been fractionated into its two major components, beta and gamma and the amino acid sequence of the gamma component established by the isolation and sequence analysis of fragments derived from cyanogen bromide cleavage and tryptic digestions. Despite its much slower mobility on sodium dodecyl sulfate-polyacrylamide electrophoretic gels, it has the same polypeptide chain length (284 residues) as the alpha and beta components of rabbit skeletal muscle. Evidence for microheterogeneity of the chicken gizzard component was detected both on electrophoretic gels and in the sequence analysis. The gamma component is more closely related to rabbit skeletal alpha-tropomyosin than to the beta component. While the protein is highly homologous to the rabbit skeletal tropomyosins, significant sequence differences are observed in two regions; between residues 42-83 and 258-284. In the latter region (COOH-terminal) the alterations in sequence are very similar to those seen in platelet tropomyosin when compared with the skeletal proteins.  相似文献   

11.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

12.
A cDNA expression library of approximately 80,000 members was prepared from rat embryonic fibroblast mRNA using the plasmid expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, clones encoding rat embryonic fibroblast tropomyosin 1 (TM-1) were identified and isolated. DNA sequence analysis was carried out to determine the amino acid sequence of the protein. Rat embryonic fibroblast TM-1 was found to contain 284 amino acids and is most homologous to smooth muscle alpha-tropomyosin compared with skeletal muscle alpha- and beta-tropomyosins and platelet beta-tropomyosin. Among the various tropomyosins, two regions where the greatest sequence divergence is evident are between amino acids 185 and 216 and amino acids 258 and 284. Rat embryonic fibroblast TM-1 and chicken smooth muscle alpha-tropomyosin are most closely related from amino acids 185 and 216 compared with skeletal muscle and platelet tropomyosins. In contrast, rat embryonic fibroblast TM-1, smooth muscle alpha-tropomyosin, and platelet tropomyosin are most homologous from amino acids 258 and 284 compared with skeletal muscle tropomyosins. These differences in sequences at the carboxyl-terminal region of the various tropomyosins are discussed in relation to differences in their binding to skeletal muscle troponin and its T1 fragment.  相似文献   

13.
Rabbit skeletal muscle protein kinase catalyzes the phosphorylation of DNA-dependent RNA polymerase of Escherichia coli in the presence of adenosine 3′,5′-monophosphate and ATP. The phosphorylation occurs on one (or more) serine residue(s) in the σ-factor under reaction conditions similar to those employed for RNA synthesis. The phosphorylation of RNA polymerase and its stimulation by protein kinase are inhibited by a specific heat-stable inhibitor from rabbit skeletal muscle. With conditions more favorable for the protein kinase reaction, phosphorylation of RNA polymerase also occurs on the β subunit of the core enzyme, but this reaction occurs at a much slower rate than the phosphorylation of the σ-factor.  相似文献   

14.
Phosphorylation of microsome-bound cytochrome P-450 LM2   总被引:1,自引:0,他引:1  
The phosphorylation of a microsomal protein of rabbit liver by catalytic subunit of cyclic AMP-dependent protein kinase was shown, and the protein was identified as cytochrome P-450 LM2 on basis of comparative peptide-mapping. Acid hydrolysis of microsome-bound phosphorylated cytochrome P-450 revealed that phosphorylation occurred exclusively on serine residues. This serine residue was identified as the same residue phosphorylated in purified, soluble P-450, that is, serine in position 128.  相似文献   

15.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

16.
A Persechini  J T Stull 《Biochemistry》1984,23(18):4144-4150
Purified rabbit skeletal muscle myosin is phosphorylated on one type of light-chain subunit (P-light chain) by calmodulin-dependent myosin light chain kinase and dephosphorylated by phosphoprotein phosphatase C. Analyses of the time courses of both phosphorylation and dephosphorylation of skeletal muscle myosin indicated that both reactions, involving at least 90% of the P-light chain, were kinetically homogeneous. These results suggest that phosphorylation and dephosphorylation of rabbit skeletal muscle myosin heads are simple random processes in contrast to the sequential phosphorylation mechanism proposed for myosin from gizzard smooth muscle. We also examined the effect of phosphorylation of rabbit skeletal muscle myosin on the actin-activated ATPase activity. We observed an apparent 2-fold decrease in the Km for actin, from about 6 microM to about 2.5 microM, with no significant effect on the Vmax (1.8s-1) in response to P-light-chain phosphorylation. There was no significant effect of phosphorylation on the ATPase activity of myosin alone (0.045 s-1). ATPase activation could be fully reversed by addition of phosphatase catalytic subunit. The relationship between the extents of P-light-chain phosphorylation and ATPase activation (at 3.5 microM actin and 0.6 microM myosin) was essentially linear. Thus, in contrast to results obtained with myosin from gizzard smooth muscle, these results suggest that cooperative interactions between the myosin heads do not play an important role in the activation process in skeletal muscle. Since the effect of P-light-chain phosphorylation is upon the Km for actin, it would appear to be associated with a significant activation of ATPase activity only at appropriate concentrations of actin and salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
MAP kinase-activated protein kinase-2 (MAPKAP kinase-2) phosphorylates the serine residues in murine heat shock protein 25 (hsp25) and human heat shock protein 27 (hsp27) which are phosphorylated in vivo in response to growth factors and heat shock, namely Ser15 and Ser86 (hsp25) and Ser15, Ser78 and Ser82 (hsp27). Ser86 of hsp25 and the equivalent residue in hsp27 (Ser82) are phosphorylated preferentially in vitro. The small heat shock protein is present in rabbit skeletal muscle and hsp25 kinase activity in skeletal muscle extracts co-purifies with MAPKAP kinase-2 activity throughout the purification of the latter enzyme. These results suggest that MAPKAP kinase-2 is the enzyme responsible for the phosphorylation of these small heat shock proteins in mammalian cells.  相似文献   

18.
Phosphorylation of rat liver glycogen synthase by phosphorylase kinase   总被引:2,自引:0,他引:2  
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase.  相似文献   

19.
ATP-citrate lyase and acetyl-CoA carboxylase purified from lactating rat mammary gland are phosphorylated stoichiometrically by the calmodulin-dependent multiprotein kinase from rabbit skeletal muscle. The reactions are completely dependent on the presence of both Ca2+ and calmodulin. ATP-citrate lyase and acetyl-CoA carboxylase are also phosphorylated stoichiometrically by the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) purified from bovine brain. Phosphorylation of these substrates is stimulated 6-fold and 40-fold respectively by Ca2+ and phosphatidylserine. The calmodulin-dependent and phospholipid-dependent protein kinases phosphorylate the same serine residue on ATP-citrate lyase that is phosphorylated by cyclic-AMP-dependent protein kinase. The sequence of the tryptic peptide containing this site on the mammary enzyme is identical with the sequence of the peptide containing the site on ATP-citrate lyase that is phosphorylated in isolated hepatocytes in response to insulin and/or glucagon. The calmodulin-dependent, phospholipid-dependent and cyclic-AMP-dependent protein kinases phosphorylate distinct sites on acetyl-CoA carboxylase. However, one of the three phosphorylated tryptic peptides derived from enzyme treated with the phospholipid-dependent kinase is identical with the major phosphopeptide (T1) derived from enzyme treated with cyclic-AMP-dependent protein kinase. Phosphorylation of acetyl-CoA carboxylase by the phospholipid-dependent protein kinase inactivates acetyl-CoA carboxylase in a similar manner to cyclic-AMP-dependent protein kinase. With either protein kinase slightly greater phosphorylation and inactivation is seen after pretreatment of acetyl-CoA carboxylase with protein phosphatase-2A, but the effects of the protein phosphatase treatment are not completely reversed. Inactivation by the phospholipid-dependent protein kinase is Ca2+- and phospholipid-dependent, is reversed by protein phosphatase-2A, and correlates with the degree of phosphorylation. The relevance of these findings to insulin- and growth-factor-promoted phosphorylation of ATP-citrate lyase and acetyl-CoA carboxylase in intact cells is discussed.  相似文献   

20.
Cyclic GMP-dependent protein kinase (PKG) phosphorylated, in vitro, the large (MYPT1) and small (M20) regulatory subunits of myosin phosphatase (MP) with maximum stoichiometries of 1.8 and 0.6 mol of phosphate/mol subunit, respectively. The phosphorylation of these subunits by PKG did not affect the phosphatase activity towards the 20 kDa myosin light chain. However, phosphorylation of the MP holoenzyme decreased the binding of MP to phospholipid. The phosphorylation of the serine residue of the C-terminal part of MYPT1 was crucial for these interactions. These results suggest that the phosphorylation of MP by PKG is not a direct mechanism in activating MP activity, and that other indirect mechanisms, including the interaction between MP and phospholipids, might be candidates for Ca2+ desensitization via cGMP in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号