首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phosphorylation of bovine cardiac C-protein by protein kinase C   总被引:3,自引:0,他引:3  
C-protein, a thick filament-associated protein, has been isolated from bovine myocardium and found to be a substrate in vitro of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C). Incorporation of approximately 1.6 mol Pi/mol C-protein was observed. This phosphorylation was dependent on both Ca2+ and a phospholipid (L-alpha-phosphatidyl-L-serine was used). Phosphate incorporation specifically into C-protein was verified by SDS-polyacrylamide gel electrophoresis and autoradiography and was almost exclusively into serine residues (86.9%), with only a small amount of phosphothreonine (13.1%) and no phosphotyrosine being detected. Two-dimensional thin-layer electrophoresis of a chymotryptic digest of phosphorylated C-protein indicated site specificity of phosphorylation. Cardiac C-protein is known to be a substrate of cAMP-dependent protein kinase both in vitro and in vivo (Jeacocke, S.A. and England, P.J. (1980) FEBS Lett. 122, 129-132). Isolated bovine cardiac C-protein was rapidly phosphorylated, to the extent of 5 mol/mol, by the purified catalytic subunit of cAMP-dependent protein kinase. Phosphorylation catalyzed by these two protein kinases was not additive, suggesting that the sites phosphorylated by protein kinase C are also phosphorylated by cAMP-dependent protein kinase. Chicken cardiac muscle has also been shown to contain a Ca2+, calmodulin-dependent protein kinase which phosphorylates C-protein (Hartzell, H.C. and Glass, D.B. (1984) J. Biol. Chem. 259, 15587-15596). The physiological role of cardiac C-protein may therefore be subject to regulation by multiple protein kinases.  相似文献   

2.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

3.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   

4.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

5.
Glycogen synthase has been purified from bovine heart to near homogeneity by a procedure including zonal sucrose gradient ultracentrifugation. The purified enzyme had a subunit molecular weight of 88,000 ± 2000, an ID ratio of between 0.8 and 1.0, and contained less than 0.1 mol of covalently bound phosphate per mole of subunit. The rates, extent, and sites of phosphorylation of the cardiac enzyme were compared with those of skeletal muscle glycogen synthase as catalyzed by both the cardiac cAMP-dependent and a cardiac cAMP-independent protein kinases. The cardiac glycogen synthase was phosphorylated up to 1 mol of phosphate/mol of subunit by the cAMP-dependent protein kinase, to at least 2 mol of phosphate/mol of subunit by the cAMP-independent protein kinase, and to at least 3 mol of phosphate/mol of subunit with the two protein kinases together. There was a linear correlation between the extent of phosphorylation and conversion of cardiac synthase I to the glucose 6-phosphate-dependent form. This correlation was independent of which kinase(s) catalyzed the phosphorylation. Maximum inactivation occurred at an incorporation of 2 mol of phosphate per subunit. Under equivalent conditions, the rates of phosphorylation of cardiac and skeletal muscle glycogen synthase by the cAMP-dependent protein kinase were identical. In contrast, the cardiac enzyme was phosphorylated at a faster rate by the homologous cardiac cAMP-independent protein kinase than was the skeletal muscle synthase by the latter cardiac protein kinase. Analysis of the sites of phosphorylation of the cardiac and skeletal muscle glycogen synthases by CNBr cleavage and trypsin hydrolysis indicated minor differences in the derived phosphopeptides.  相似文献   

6.
Chicken cardiac C-protein was readily phosphorylated by purified calcium/calmodulin-dependent protein kinase II (CaM-kinase II). Maximum incorporation was about 4 mol of 32P/mol of C-protein subunit. Peptide mapping indicated that some of the sites phosphorylated by CaM-kinase II were located on the same phosphopeptides obtained when C-protein was phosphorylated by the cAMP-dependent protein kinase (peptides T1, T2, and T3). There was a fourth peptide (T3a) which was unique to CaM-kinase II phosphorylation. 32P-Amino acid analysis showed that essentially all of the 32P of peptides T1, T2, and T3a was in phosphoserine. cAMP-dependent protein kinase incorporated 32P only into threonine of peptide T3. Threonine was the preferred site of phosphorylation by CaM-kinase II, but there was significant phosphorylation of a serine in peptide T3. Partially purified C-protein preparations contained an associated calcium/calmodulin-dependent protein kinase. Peptide maps obtained from C-protein phosphorylated by the endogenous kinase were similar to those obtained from C-protein phosphorylated by CaM-kinase II. However, the ratio of phosphothreonine to phosphoserine in peptide T3 was lower. This was due to a contaminating phosphatase in the partially purified C-protein which preferentially dephosphorylated the phosphothreonine of peptide T3. It is suggested that the calcium/calmodulin-dependent protein kinase associated with C-protein is similar or identical to CaM-kinase II and that CaM-kinase II may play a role in the phosphorylation of C-protein in the heart.  相似文献   

7.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

8.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

9.
G Jakab  E G Kranias 《Biochemistry》1988,27(10):3799-3806
Phospholamban, the putative regulator for the calcium pump, was purified to apparent homogeneity and in high yields from canine cardiac sarcoplasmic reticulum membranes. Purified phospholamban migrated with an apparent Mr of 27,000 in alkaline sodium dodecyl sulfate-polyacrylamide gels, and upon boiling in 7.5% sodium dodecyl sulfate, it dissociated into a lower molecular weight component of 5500-6000. Purified phospholamban contained 0.62 +/- 0.09 mumol of lipid Pi/mg of protein, and the major phospholipids were phosphatidylserine (34%), phosphatidylcholine (22%), sphingomyelin (17%), phosphatidylinositol (13%), and phosphatidylethanolamine (9%). Phospholamban was phosphorylated by cAMP-dependent protein kinase to a level of 207 nmol of Pi/mg, and this would indicate an incorporation of 1 mol of phosphate/mol of protein, assuming a molecular weight of 5500 for phospholamban. Phosphorylation of phospholamban could be reversed by a "phospholamban phosphatase" isolated from canine cardiac cytosol. Phospholipids associated with the purified phospholamban were also phosphorylated in the presence of the catalytic subunit of cAMP-dependent protein kinase, and the maximal phosphate incorporation was 4 nmol/mg of protein. The main phospholipids phosphorylated were phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate. Phosphorylation of phospholipids was inhibited by the heat-stable inhibitor protein of the cAMP-dependent protein kinase, and it could be also reversed by the phospholamban phosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Liver glycogen phosphorylase associated with the glycogen pellet was activated by a MgATP-dependent process. This activation was reduced by 90% by ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, not affected by the inhibitor of the cAMP-dependent protein kinase, and increased 2.5-fold by the catalytic subunit of cAMP-dependent protein kinase. Low levels of free Ca2+ (8 x 10(-8) M) completely prevented the effects of the chelator. The activation of phosphorylase by MgATP was shown not to be due to formation of AMP. DEAE-cellulose chromatography of the glycogen pellet separated phosphorylase from phosphorylase kinase. The isolated phosphorylase was no longer activated by MgATP in the presence or absence of the catalytic subunit of cAMP-dependent protein kinase. The isolated phosphorylase kinase phosphorylated and activated skeletal muscle phosphorylase b and the activation was increased 2- to 3-fold by the catalytic subunit of cAMP-dependent protein kinase. Mixing the isolated phosphorylase and phosphorylase kinase together restored the effects of MgATP and the catalytic subunit of cAMP-dependent protein kinase on phosphorylase activity. These findings demonstrate that the phosphorylase kinase associated with liver glycogen has regulatory features similar to those of muscle phosphorylase kinase.  相似文献   

11.
A form of glycogen synthase kinase designated GSK-M3 was purified 4000-fold from rat skeletal muscle by phosphocellulose, Affi-Gel blue, Sephacryl S-300 and carboxymethyl-Sephadex column chromatography. Separation of GSK-M from the catalytic subunit of the cAMP-dependent protein kinase was facilitated by converting the catalytic subunit to the holoenzyme form by addition of the regulatory subunit prior to the gel filtration step. GSK-M had an apparent Mr 62,000 (based on gel filtration), an apparent Km of 11 microM for ATP, and an apparent Km of 4 microM for rat skeletal muscle glycogen synthase. The kinase had very little activity with 0.2 mM GTP as the phosphate donor. Kinase activity was not affected by the addition of cyclic nucleotides, EGTA, heparin, glucose 6-P, glycogen, or the heat-stable inhibitor of cAMP-dependent protein kinase. Phosphorylation of glycogen synthase from rat skeletal muscle by GSK-M reduced the activity ratio (activity in the absence of Glc-6-P/activity in the presence of Glc-6-P X 100) from 90 to 25% when approximately 1.2 mol of phosphate was incorporated per mole of glycogen synthase subunit. Phosphopeptide maps of glycogen synthase obtained after digestion with CNBr or trypsin showed that this kinase phosphorylated glycogen synthase in serine residues found in the peptides containing the sites known as site 2, which is located in the N-terminal CNBr peptide, and site 3, which is located in the C-terminal CNBr peptide of glycogen synthase. In addition to phosphorylating glycogen synthase, GSK-M phosphorylated inhibitor 2 and activated ATP-Mg-dependent protein phosphatase. Activation of the protein phosphatase by GSK-M was dependent on ATP and was virtually absent when ATP was replaced with GTP. GSK-M had minimal activity toward phosphorylase b, casein, phosvitin, and mixed histones. These data indicate that GSK-M, a major form of glycogen synthase kinase from rat skeletal muscle, differs from the known glycogen synthase kinases isolated from rabbit skeletal muscle.  相似文献   

12.
The alpha subunit of the sodium channel purified from rat brain is rapidly and selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 3 to 4 mol of 32P/mol of saxitoxin-binding activity. The rate of phosphorylation is comparable to that of the synthetic peptide analog of the phosphorylation site of pyruvate kinase, one of the best substrates for cAMP-dependent protein kinase. An endogenous cAMP-dependent protein kinase that is present in the partially purified sodium channel preparations also selectively phosphorylates the alpha subunit. The specificity and rapidity of the phosphorylation reaction are consistent with the hypothesis that the alpha subunit is phosphorylated by cAMP-dependent protein kinase in vivo.  相似文献   

13.
Calsequestrin is an acidic Ca2(+)-binding protein of sarcoplasmic reticulum existing as different gene products in cardiac muscle and skeletal muscle. A unique feature of cardiac calsequestrin is a 31-amino acid-long COOH-terminal tail (Scott, B. T., Simmerman, H. K. B., Collins, J. H., Nadal-Ginard, B., and Jones, L. R. (1988) J. Biol. Chem. 263, 8958-8964), which is highly acidic and contains several consensus phosphorylation sites for casein kinase II. In the work described here, we tested whether this cardiac-specific sequence is a substrate for casein kinase II. Both cardiac and skeletal muscle calsequestrins were phosphorylated by casein kinase II, but cardiac calsequestrin was phosphorylated to a higher stoichiometry and at least 50 times more rapidly. The site of rapid phosphorylation of cardiac calsequestrin was localized to the distinct COOH terminus, where a cluster of three closely spaced serine residues are found (S378DEESN-DDSDDDDE-COOH). The slower phosphorylation of skeletal muscle calsequestrin occurred at its truncated COOH terminus, at threonine residue 363 (I351NTEDDDDDE-COOH). The similar sequence in cardiac calsequestrin (I351NTEDDDNEE) was not phosphorylated. Cardiac calsequestrin, as isolated, already contained 1.2 mol of Pi/mol of protein, whereas skeletal muscle calsequestrin contained only trace levels of Pi. The endogenous Pi of cardiac calsequestrin was also localized to the distinct COOH terminus. Our results indicate that the cardiac isoform of calsequestrin is the preferred substrate for casein kinase II both in vivo and in vitro.  相似文献   

14.
C-protein from rabbit soleus (red) muscle.   总被引:6,自引:0,他引:6       下载免费PDF全文
A new form of skeletal-muscle C-protein has been isolated from rabbit soleus (red) muscle. This new form of C-protein has been purified to homogeneity by a procedure similar to that used to purify C-protein from white skeletal muscle. In soleus muscle, only this new form of C-protein could be detected, whereas in psoas (white) muscle, only the previously identified form of C-protein was detected. The content of C-protein in rabbit soleus muscle is comparable with that found in psoas muscle. Other rabbit skeletal muscles composed of a mixture of fibre types contained at least two forms of C-protein. C-Protein derived from red skeletal muscle bound to myosin isolated from either red or white tissue, with maximum binding occurring at a ratio of approximately 13 microgram of red C-protein/100 microgram of myosin. Polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate indicated that C-protein isolated from red skeletal muscle has a molecular weight approx. 7% greater than that of C-protein isolated from white skeletal muscle. The amino acid content of both forms of C-protein was similar but major differences in the mol % of isoleucine and threonine were found. Antiserum against C-protein from white rabbit skeletal muscle formed a single precipitin line with rabbit C-protein on double in agar. This antiserum did not form a precipitin line when diffused against red C-protein from rabbit skeletal muscle. Also, this antiserum bound specifically to the A-band region of myofibrils isolated from psoas (white) muscle, but it did not bind to myofibrils prepared from soleus (red) muscle.  相似文献   

15.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

16.
An active form of phosphorylase phosphatase of Mr = 33,000, referred to as the catalytic subunit for over a decade, was purified to near-homogeneity from rabbit skeletal muscle. Repeated immunization of a sheep produced immunoglobulins that blocked the activity of the phosphatase. These immunoglobulins were affinity-purified on columns of immobilized phosphorylase phosphatase and used as macromolecular probes in a "Western" immunoblotting procedure with peroxidase-conjugated rabbit anti-sheep immunoglobulins. Only one protein, of Mr = 33,000, was stained in samples of the immunogen, attesting to the specificity of the probes. However, the Mr = 33,000 phosphatase protein was not detected in muscle extracts or in partially purified preparations. Instead, a single protein of Mr = 70,000 was detected. Limited proteolysis, in particular by Staphylococcus aureus V8 protease and thermolysin, converted the immunoreactive protein from Mr = 70,000 to Mr = 33,000. Coagulation of the phosphatase preparation with 80% ethanol at room temperature rendered the Mr = 70,000 protein insoluble, but allowed extraction of the Mr = 33,000 protein from the precipitate. Thus, we conclude that the immunoreactive protein of Mr = 70,000 is the "catalytic subunit" of phosphorylase phosphatase with a catalytic domain of Mr = 33,000. Previous purification schemes have yielded only the fragment of Mr = 33,000 due to its relative resistance to proteolysis and coagulation. Gel filtration chromatography of the "native" form of phosphorylase phosphatase showed Mr approximately 230,000. Both the Mr = 70,000 catalytic subunit and a Mr = 60,000 protein related to inhibitor-2 were detected by immunoblotting in the same fractions that exhibited activity after treatment with Co2+ and trypsin. Only the Mr = 60,000 protein was degraded during this activation process. We propose that the native phosphorylase phosphatase is an elongated structure with two-fold symmetry, containing one catalytic subunit of Mr = 70,000 and one regulatory subunit of Mr = 60,000.  相似文献   

17.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen.  相似文献   

18.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Previous studies identified proline-directed protein kinase (PDPK) as a growth factor-sensitive serine/threonine protein kinase that is active in the cytosol of proliferative cells and tissues during interphase. In this communication, we report that the regulatory subunit (RII) of bovine cardiac muscle cAMP-dependent protein kinase (PKA) is a putative substrate for the multifunctional PDPK. Purified RII is readily phosphorylated by PDPK in vitro in a time-dependent, enzyme-dependent manner to a stoichiometry approaching 0.7 mol phosphate/mol RII subunit protein. The major RII phosphorylation site is identified as a threonine residue located within a large hydrophobic tryptic peptide that is predicted to contain the cAMP binding domains. In contrast to the reported effects of RII autophosphorylation, kinetic analysis of RII function following phosphorylation by PDPK indicates that the inhibitory potency of RII toward the catalytic subunit of PKA in a reassociation assay is increased in proportion to the degree of phosphorylation. Further studies indicate that the cAMP-dependent activation of the RII2C2 holoenzyme is inhibited by PDPK phosphorylation. Taken together, the results of these studies indicate that phosphorylation of RII by PDPK attenuates the activity of PKA. This antagonistic interaction suggests a biochemical mechanism by which a growth factor-activated signaling system may function to modulate cAMP-dependent cellular responses.  相似文献   

20.
A new thick-filament-associated protein, the 86 kd protein, of chicken pectoralis major muscle was isolated from a crude C-protein preparation by a method similar to that used to purify H-protein from rabbit skeletal muscle. However, the protein with an apparent Mr of 86,000 and 370,000 as estimated by gel electrophoresis and gel permeation, respectively, is not related to C-protein and differs from rabbit H-protein by its elution behaviour from hydroxyapatite columns, by its molecular weight, ultraviolet light spectrum, amino acid composition and localization, and by its amount present in myofibrils. The amino acid composition reveals a high content of proline and gel permeation indicates an either highly asymmetric or polymeric structure of the molecule. Antibodies raised in rabbits against the 86 kd protein were demonstrated by double immunodiffusion and immunoblotting experiments to be specific for this protein. They show no cross-reactivity with any other myofibrillar protein of chicken pectoralis muscle, e.g. myosin, M-band proteins, titin or C-protein, nor did they exhibit a significant cross-reactivity with H-protein from rabbit. The 86 kd protein, which has been purified also by antibody affinity chromatography from a freshly prepared Guba-Straub extract of washed myofibrils, is a specific myofibrillar component located within each half of the A-band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号