首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel, alpha-class glutathione S-transferase (GST) isozyme has been isolated from human liver using glutathione (GSH) affinity chromatography, DEAE-cellulose ion-exchange chromatography, and immunoaffinity chromatography. The isozyme is a dimer of approximately 25,000 Mr with blocked N termini. Structural, kinetic, and immunological properties of this enzyme indicate that it belongs to the alpha class of GSTs. Noticeable differences between the properties of this enzyme and the other alpha-class GSTs of human liver are its anionic nature (pI 5.0), GSH peroxidase activity toward hydrogen peroxide, and relatively higher GSH conjugating activities toward CDNB and epoxide substrates as compared to other alpha-class GSTs. Results of these studies indicate that anionic GST omega characterized previously (Y. C. Awasthi, D. D. Dao, and R. P. Saneto, 1980, Biochem. J. 191, 1-10) from human liver is a mixture of GST pi and a novel alpha-class GST. We have, therefore, reassigned the name GST omega to this new alpha-class anionic GST of human liver.  相似文献   

2.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

3.
Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme''s steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.  相似文献   

4.
mu-Class glutathione S-transferases (GSTs) were identified in all 13 human testes and 28 brains examined; even subjects whose livers were devoid of mu-GSTs expressed extrahepatic GSTs of this class. Testes and brains from individuals with mu-class GSTs in their livers had additional forms that also reflected the liver phenotypes. An isoenzyme with an isoelectric point of 5.2, which was a major GST in testis and present as well in cerebral cortex but not detected in any livers, was identified and purified. Sequence analysis of peptides derived by cleavage of the testicular mu-class GST by Achromobacter protease I revealed distinct aspects of primary structure not found previously in any mammalian mu-class GSTs. These unique features included a blocked and extended amino terminus and 3 additional residues (Pro-Val-Cys) at the carboxyl terminus. This structure was confirmed by molecular cloning and sequencing of cDNAs derived from human testis and brain libraries. In the coding region the mRNA of the brain-testis mu-class GST was 75% homologous with that of the liver form, and its 3'-untranslated sequence was mostly divergent, indicating that it is the product of a separate gene. Distinct catalytic and structural properties of the testis-brain mu-class GSTs suggest that these GSTs may be uniquely involved in blood-barrier functions common to both organs.  相似文献   

5.
Glutathione S-transferases (GSTs) of rat pancreas have been characterized and their interrelationship with fatty acid ethyl ester synthase (FAEES) has been studied. Seven GST isozymes with pI values of 9.2, 8.15, 7.8, 7.0, 6.3, 5.9 and 5.4 have been isolated and designated as rat pancreas GST suffixed by their pI values. Structural, immunological and kinetic properties of these isozymes indicated that GST 9.2 belonged to the alpha class, GST 7.8, 7.0, 6.3 and 5.9 belonged to the mu class, whereas GST 8.15 and 5.4 belong to pi class. The N-terminal sequences and pI values of the mu class isozymes suggested that rat GST subunits 3, 4 and 6 may be expressed in pancreas. N-Terminal sequences of both the pi class isozymes, GST 8.15 and 5.4, were similar to that of GST-P, but there were significant differences in the substrate specificities of these two enzymes. Results of peptide finger print studies also indicated minor structural differences between these two isozymes. None of the GST isozymes of rat pancreas expressed FAEES activity. Rat pancreas had a significant amount of FAEES activity, but it segregated independently during the purification of GST indicating that these two activities are expressed by different proteins and are not related as suggested previously.  相似文献   

6.
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.  相似文献   

7.
Glutathione transferase isoenzymes from human prostate.   总被引:1,自引:0,他引:1       下载免费PDF全文
By using affinity-chromatography and isoelectric-focusing techniques, several forms of glutathione transferase (GSTs) were resolved from human prostate cytosol. All the three major classes of GST, i.e. Alpha, Mu and Pi, are present in human prostate. However, large inter-individual variation in the qualitative and quantitative expression of different isoenzymes resulted in the samples investigated. The most abundant group of prostate isoenzymes showed acid (pI 4.3-4.7) behaviour and were classified as Pi class GSTs on the basis of their immunological and structural properties. Immunohistochemical staining of Pi class GSTs was prevalently distributed in the epithelial cells surrounding the alveolar lumen. Class Mu GSTs are also expressed, although in small amounts and in a limited number of samples, by human prostate. The major cationic isoenzyme purified from prostate, GST-9.6; (pI 9.6; apparent subunit molecular mass of 28 kDa), appears to be different from the cationic GST alpha-epsilon forms isolated from human liver and kidney as evidenced by its structural, kinetical and immunological properties. This enzyme, which accounts for about 20-30% (on protein basis) of total amount of GSTs, is expressed by only 40% of samples. GST-9.6 has the ability to cross-react in immunoblotting analysis with antisera raised against rat liver GST 2-2, rather than with antisera raised against members of human Alpha, Mu and Pi class GSTs. Although prostate GST-9.6 shows close relationship with the human skin GST pI 9.9, it does not correspond to any other known human GST.  相似文献   

8.
We have synthesized the 5,6-LTA4, 8,9-LTA4, and 14,15-LTA4 as methyl esters by an improved biomimetic method with yields as high as 70-80%. We have investigated the catalytic efficiency of the purified cytosolic glutathione S-transferase (GST) isozymes from rat liver in the conversion of these leukotriene epoxides to their corresponding LTC4 methyl esters. Among various rat liver GST isozymes, the anionic isozyme, a homodimer of Yb subunit, exhibited the highest specific activity. In general, the isozymes containing the Yb subunit showed better activity than the isozymes containing the Ya and/or Yc subunits. Interestingly, all three different LTA4 methyl esters gave comparable specific activities with a given GST isozyme indicating that regiospecificity of GSTs was not the factor in determining their ability to catalyze this reaction. Surprisingly, purified GSTs from sheep lung and seminal vesicles showed little activity toward these leukotriene epoxides, indicating a lack of the counterpart of rat liver anionic GST isozyme in these tissues.  相似文献   

9.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

10.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

11.
12.
A mouse glutathione S-transferase (GST) isozyme designated as GST 5.7 or mGSTA4-4 belongs to a distinct subclass of the α-class isozymes of GST. It is characterized by kinetic properties intermediate between the α- and π-classes of GSTs. We have recently cloned and expressed this isozyme (rec-mGSTA4-4) in E. coli and have reported its complete primary sequence (Zimniak, P. et al. (1992) FEBS Lett., 313, 173–176). Using antibodies raised against the homogenous rec-mGSTA4-4 expressed in E. coli, we now demonstrate that an ortholog of this isozyme was selectively expressed in various human tissues. The human ortholog of mGST A4-4 purified from liver had a pI value of 5.8 and constituted approx. 1.7% of total GST protein of human liver. Similar to other α-class GSTs, the N-terminus of this isozyme (GST 5.8) was also blocked. CNBr digestion of the enzyme yielded two major fragments with Mr values of 12 kDa and 6 kDa. The sequences of these two fragments showed identities in 16 out of 20 residues and 17 out of 20 residues with the corresponding sequences of its mouse ortholog (mGSTA4-4), and showed significant homologies with the rat and chicken orthologs, GST 8-8 and GST CL3. Human liver GST 5.8 showed more than an order of magnitude higher activity towards t-4-hydroxy-2-nonenal as compared to 1-chloro-2,4-dinitrobenzene. This isozyme also expressed glutathione-peroxidase activity towards fatty acid, as well as phospholipid hydroperoxidase suggesting its role in protection mechanisms against the toxicants generated during lipid peroxidation. Western blot analysis of human tissues revealed that this GST isozyme was selectively expressed in human liver, pancreas, heart, brain and bladder tissues, but absent in lung, skeletal muscle, spleen and colon.  相似文献   

13.
14.
Two homodimeric isozymes, glutathione S-transferase (GST) 25 kDa and GST 27 kDa, in equal proportion comprise the majority (greater than 75%) of the pulmonary cytosolic GST of untreated rabbits. The subunits of GST 25 kDa and GST 27 kDa are distinguishable by electrophoretic mobility (25 and 27 kDa, respectively), apparent isoelectric points (pI 7.4 and pI 9.1, respectively), and immunoreactivity. Immunoblots indicated that these subunits may be minor components in hepatic cytosol. The pulmonary isozymes could not be distinguished by their activities toward chloro-2,4-dinitrobenzene (CDNB) or activity and stereoselectivity toward pyrene 4,5-oxide (PyO). The purified GST fractions represented less than or equal to 16% of the PyO activity for pulmonary cytosol. The stereoselectivity of the cytosolic GST for the pro-S-configured oxirane carbon of PyO was not maintained in the purified preparations which were virtually nonstereoselective. Immunoprecipitation of pulmonary cytosolic GST with anti-GST 27 kDa and anti-GST 25 kDa indicated that at least 84 and 60% of the activity toward CDNB and PyO, respectively, is mediated by the two isozymes. The specific PyO activities of GST 27 kDa, GST 25 kDa, and the rabbit hepatic preparations (approximately 0.2 unit/mg) were similar to that of hepatic GST purified from horse, cow, and pig, and to human placental GST pi (0.02-0.5 unit/mg) but one-tenth that of rat hepatic GST or human hepatic GST mu. However, the activity of the hepatic cytosol from rat and human was similar to that of rabbit. Thus, some GST isozymes may be particularly susceptible to modulation of activity/stereoselectivity that can be discerned with arene oxide substrates such as PyO.  相似文献   

15.
Glutathione-S-transferase (GST) was isolated from the northern hardshell clam Mercinaria mercinaria (quahog) using a two-step procedure involving ammonium sulfate precipitation and affinity chromatography. Kinetic analysis of the purified enzyme using 1-chloro-2,4-dinitrobenzene as substrate revealed a specific activity of 38.0 μmol min−1 mg−1, while V max and K m values were estimated as 48.0 μmol min−1 mg−1 and 0.24 mM, respectively. Electrophoretic analysis of GST indicated multiple forms of the dimeric enzyme in quahogs with subunit molecular masses of 22, 24, 25, and 27 kDa. Isoelectric focusing analysis resulted in pI values for three isoenzymes of 5.1, 4.9, and 4.6. The acidic pI values obtained indicated that quahog GST belongs to the π class. Inhibition of quahog GST by tetrapyrroles was similar to that of GST from oyster and rat liver. Quantitative comparison of tetrapyrrole inhibition patterns of quahog GST with those of oyster and rat liver GST indicated lower inhibition rates by three of the four tetrapyrroles tested (bilirubin, biliverdin, and chlorophillyin), suggesting that quahog GST could differ structurally or functionally from oyster and rat liver GSTs. Received March 17, 1998; accepted August 18, 1998.  相似文献   

16.
The cytosolic glutathione transferases (GSTs) with basic pI values have been studied in mouse liver after treatment with 2,3-t-butylhydroxyanisole (BHA), cafestol palmitate (CAF), phenobarbital (PB), 3-methylcholanthrene (3-MC) and trans-stilbene oxide (t-SBO). The cytosolic GST activity was induced by all compounds except for 3-MC. Three forms of GST were isolated by means of affinity chromatography and f.p.l.c. The examination of protein profiles and enzymic activities with specific substrates showed that the three GSTs correspond to those found in control animals, i.e. GSTs MI, MII and MIII. The class Mu GST MIII accounted for the major effect of induction, whereas the class Alpha GST MI and the class Pi GST MII were unchanged or somewhat down-regulated. The greatest induction was obtained with BHA, PB and CAF. The activities of other glutathione-dependent enzymes were also studied. An increase in glutathione reductase and thioltransferase activities was observed after BHA, PB or CAF treatment; glyoxalase I and Se-dependent glutathione peroxidase were depressed in comparison with the control group in all cases studied.  相似文献   

17.
In the adult dog liver cytosol we identified four glutathione S-transferase (GST) subunits, Yd1 (Mr 26,000), Yd2 (Mr 27,000), Yd3 (Mr 28,000), and Ydf (Mr 27,400), and purified GST forms comprising Yd1, Yd2, and Yd3, to apparent homogeneity. Unlike rat transferases the enzyme activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was not retained on the affinity column. Thus the DCNB-active enzyme, GST YdfYdf, from the flow-through fraction of the affinity column was also purified to homogeneity by gel filtration, DE52 chromatography, chromatofocusing, and hydroxylapatite column chromatography. Immunoblot analysis of dog GSTs revealed that the subunits Yd1, Yd2, and Yd3 belong to the pi, alpha, and mu class, respectively. On the contrary, Ydf had no reactivity with antibodies raised against any of the three classes of GST. Each subunit, Yd1, Yd2, Yd3, and Ydf, was distinguishable by its own retention time on reverse-phase high performance liquid chromatography. N-terminal amino acid sequences of the dog GSTS Yd1Yd1 and Yd3Yd3 revealed a high degree of homology to the pi and mu class transferases from rat, human, and mouse, respectively, while the N terminus of Yd2Yd2 is blocked. N-terminal amino acid sequences of GST YdfYdf showed no homology to any of the three classes of GST. The most significant property noted of GST YdfYdf is the high specific activity toward DCNB, exceeding by 1 order of magnitude the corresponding values for the known mu class GSTs. The present results strongly suggest that dog GST YdfYdf is a unique enzyme distinct from the hitherto characterized GST isozymes.  相似文献   

18.
Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nano-spray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.  相似文献   

19.
The 13 forms of human liver glutathione S-transferases (GST) (Vander Jagt, D. L., Hunsaker, L. A., Garcia, K. B., and Royer, R. E. (1985) J. Biol. Chem. 260, 11603-11610) are composed of subunits in two electrophoretic mobility groups: Mr = 26,000 (Ha) and Mr = 27,500 (Hb). Preparations purified from the S-hexyl GSH-linked Sepharose 4B affinity column revealed three additional peptides at Mr = 30,800, Mr = 31,200, and Mr = 32,200. Immunoprecipitation of human liver poly(A) RNAs in vitro translation products revealed three classes of GST subunits and related peptides at Mr = 26,000, Mr = 27,500, and Mr = 31,000. The Mr = 26,000 species (Ha) can be precipitated with antisera against a variety of rat liver GSTs containing Ya, Yb, and Yc subunits, whereas the Mr = 27,500 species (Hb) can be immunoprecipitated most efficiently by antiserum against the anionic isozymes as well as a second Yb-containing isozyme (peak V) from the rat liver. The Mr = 31,000 band can be immunoprecipitated by antisera preparations against sheep liver, rat liver, and rat testis isozymes. Human liver GSTs do not have any subunits of the rat liver Yc mobility. Antiserum against the human liver GSTs did not cross-react with the Yc subunits of rat livers or brains in immunoblotting experiments. The human liver GST cDNA clone, pGTH1, selected human liver poly(A) RNAs for the Ha subunit(s) in the hybrid-selected in vitro translation experiments. Southern blot hybridization results revealed cross-hybridization of pGTH1 with the Ya, Yb, and Yc subunit cDNA clones of rat liver GSTs. This sequence homology was substantiated further in that immobilized pGTH1 DNA selected rat liver poly(A) RNAs for the Ya, Yb, and Yc subunits with different efficiency as assayed by in vitro translation and immunoprecipitation. Therefore, we have demonstrated convincingly that sequence homology as well as immunological cross-reactivity exist between GST subunits from several rat tissues and the human liver. Also, the multiple forms of human liver GSTs are most likely encoded by a minimum of three different classes of mRNAs. These results suggest a genetic basis for the subunit heterogeneity of human liver GSTs.  相似文献   

20.
Y6 and Y115 are key amino acids involved in enzyme-substrate interactions in mu-class glutathione S-transferase (GST). They provide electrophilic assistance and stabilize substrates through their hydroxyl groups. Two site-directed mutants (Y7F and Y116F) and the wild-type shrimp GSTs were expressed in Escherichia coli, and the steady-state kinetic parameters were determined using CDNB as the second substrate. The mutants were modeled based on a crystal structure of a mu-class GST to obtain further insights about the changes at the active site. The Y116F mutant had an increase in kcat contrary to Y7F compared to the wild type. Molecular modeling showed that the shrimp GST has a H108 residue that may contribute to compensate and lead to a less deleterious change when conserved tyrosine residues are mutated. This work indicates that shrimp GST is a useful model to understand the catalysis mechanisms in this critical enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号