首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

2.
T Suzuki  M S Kovacs  P G Board 《FEBS letters》1990,275(1-2):58-60
Two fatty acid ethyl ester (FAEE) synthase isoenzymes purified from human myocardium were reported to be glutathione S-transferases (GST) [(1989) Proc. Natl. Acad. Sci. USA 86, 4470-4473; and (1989) J. Clin. Invest. 84, 1942-1946]. In the present study, the FAEE synthase activity of several purified and well characterized human GSTs were examined with ethanol and [14C]oleic acid as substrates. Three isoenzymes, GST1, GST2 and GST3 which are members of the evolutionary classes mu, alpha, and pi, respectively, were studied and failed to show any significant synthesis of FAEE after 45 min incubation at 37 degrees C. FAEE synthase activity and GST3 activity in human placental extracts can be readily separated by ion exchange chromatography on DEAE cellulose. Thus the results show that FAEE synthase activity is not a feature of the major GSTs found in human tissues. The two FAEE synthase isoenzymes isolated by Bora et al. may have been co-purified with GST isoenzymes or these FAEE synthases may be members of the GST super family that have low specific activity in conventional GST assays and have not been previously described.  相似文献   

3.
In the present study, the enzymatic conjugation of the isoprene monoepoxides 3,4 epoxy-3-methyl-1-butene (EPOX-I) and 3,4-epoxy-2-methyl-1-butene (EPOX-II) with glutathione was investigated, using purified glutathione S-transferases (GSTs) of the alpha, mu, pi and theta-class of rat and man. HPLC analysis of incubations of EPOX-I and EPOX-II with [35S]glutathione (GSH) showed the formation of two radioactive fractions for each isoprene monoepoxide. The structures of the EPOX-I and EPOX-II GSH conjugates were elucidated with 1H-NMR analysis. As expected, two sites of conjugation were found for both isoprene epoxides. EPOX-II was conjugated more efficiently than EPOX-I. In addition, the mu and theta class glutathione S-transferases were much more efficient than the alpha and pi class glutathione S-transferases, both for rat and man. Because the mu- and theta-class glutathione S-transferases are expressed in about 50 and 40-90% of the human population, respectively, this may have significant consequences for the detoxification of isoprene monoepoxides in individuals who lack these enzymes. Rat glutathione S-transferases were more efficient than human glu tathione S-transferases: rat GST T1-1 showed about 2.1-6.5-fold higher activities than human GST T1-1 for the conjugation of both EPOX-I and EPOX-II, while rat GST M1-1 and GST M2-2 showed about 5.2-14-fold higher activities than human GST M1a-1a. Most of the glutathione S-transferases showed first order kinetics at the concentration range used (50-2000 microM). In addition to differences in activities between GST-classes, differences between sites of conjugation were found. EPOX-I was almost exclusively conjugated with glutathione at the C4-position by all glutathione S-transferases, with exception of rat GST M1-1, which also showed significant conjugation at the C3-position. This selectivity was not observed for the conjugation of EPOX-II. Incubations with EPOX-I and EPOX-II and hepatic S9 fractions of mouse, rat and man, showed similar rates of GSH conjugation for mouse and rat. Compared to mouse and rat, human liver S9 showed a 25-50-fold lower rate of GSH conjugation.  相似文献   

4.
This study describes immunohistochemical localization, purification and characterization of glutathione S-transferase (GST) of human urinary bladder. Even though all the three major classes of isoenzymes (alpha, mu, and pi) were expressed in human bladder, more than 90% of total GST activity was accounted for by a pi class anionic form. Human bladder alpha, mu, and pi class GSTs were immunologically related to respective isoenzymes of other human tissues. GST pi was present in all 13 samples analyzed, whereas GST alpha and mu were detected in nine and eleven samples, respectively. GST alpha of human bladder appeared to be unique, because unlike this class of GSTs of other human tissues, bladder enzyme had lower affinity for GSH linked to epoxy-activated Sepharose 6B affinity resin. Immunohistochemical staining indicated localization of GST alpha in epithelial surface cells, underlying submucosa and smooth muscle, whereas mu and pi class isoenzymes were predominantly distributed in epithelial surface cells. These results suggest that human bladder GSTs may play an important role in providing protection against xenobiotics because epithelium is considered a target for several carcinogens and all the three classes of isoenzymes are expressed in these cells.  相似文献   

5.
The compound 3-methyleneoxindole (MOI), a photooxidation product of the plant auxin indole-3-acetic acid, functions as an affinity label of the dimeric pi class glutathione S-transferase (GST) isolated from pig lung. MOI inactivates the enzyme to a limit of 14% activity. The k for inactivation by MOI is decreased 20-fold by S-hexylglutathione but only 2-fold by S-methylglutathione, suggesting that MOI does not react entirely within the glutathione site. The striking protection against inactivation provided by S-(hydroxyethyl)ethacrynic acid indicates that MOI reacts in the active site region involving both the glutathione and the xenobiotic substrate sites. Incorporation of [(3)H]MOI up to approximately 1 mol/mol of enzyme dimer concomitant with maximum inactivation suggests that there are interactions between subunits. Fractionation of the proteolytic digest of [(3)H]MOI-modified GST pi yielded Trp38 as the only labeled amino acid. The crystal structure of the human GST pi-ethacrynic acid complex (2GSS) shows that the indole of Trp38 is less than 4 A from ethacrynic acid. Similarly, MOI may bind in this substrate site. In contrast to its effect on the pi class GST, MOI inactivates much less rapidly and extensively alpha and mu class GSTs isolated from the rat. These results show that MOI reacts preferentially with GST pi. Such a compound may be useful in novel combination chemotherapy to enhance the efficacy of alkylating cancer drugs while minimizing toxic side effects.  相似文献   

6.
Six cytosolic GSTs from porcine liver were purified by a combination of glutathione affinity chromatography and ion-exchange HPLC. The isoenzymes were characterized by SDS-PAGE, gel filtration, isoelectric focusing, immunoblotting analysis and determination of substrate specificities and inhibition characteristics. The purified GSTs belong to the alpha and mu classes, respectively. No class pi isoenzyme was isolated or detected. The class alpha GST pA1-1* exists as a homodimer (Mr = 25.3 kDa), whereas GST pA2-3* consists of two subunits with different Mr values (27.0 and 25.3 kDa). The estimated pI values were 9.5 and 8.8, respectively. Furthermore, four class mu porcine GSTs, pM1-1*, pM1-2*, pM3-?* and pM4-?*, were isolated. The isoenzyme pM1-1* possesses a relative molecular mass of 27.2 kDa and a pI value of 6.2. Additional pM1 isoenzymes hybridize with the subunit pM2* (Mr = 25.2) to furnish a heterodimer, which shows a pI value of 5.8. The other class mu isoenzymes are heterodimers with pI values of 5.45 and 5.05. Substrate specificities and inhibition characteristics correlate very well with those of the corresponding human isoenzymes. The results are discussed with regard to the usefulness of porcine GSTs as an in vitro testing model.  相似文献   

7.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1-1, A4-4), mu (M1-1, M2-2) and pi (the allelic variants P1-1/ile, and P1-1/val) classes, and a rat theta (rT2-2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM(-1) s(-1) for GST A1-1 and 2.14 mM(-1) s(-1) for GST A4-4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM(-1) s(-1). Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

8.
Glutathione S-transferases (GSTs) of rat pancreas have been characterized and their interrelationship with fatty acid ethyl ester synthase (FAEES) has been studied. Seven GST isozymes with pI values of 9.2, 8.15, 7.8, 7.0, 6.3, 5.9 and 5.4 have been isolated and designated as rat pancreas GST suffixed by their pI values. Structural, immunological and kinetic properties of these isozymes indicated that GST 9.2 belonged to the alpha class, GST 7.8, 7.0, 6.3 and 5.9 belonged to the mu class, whereas GST 8.15 and 5.4 belong to pi class. The N-terminal sequences and pI values of the mu class isozymes suggested that rat GST subunits 3, 4 and 6 may be expressed in pancreas. N-Terminal sequences of both the pi class isozymes, GST 8.15 and 5.4, were similar to that of GST-P, but there were significant differences in the substrate specificities of these two enzymes. Results of peptide finger print studies also indicated minor structural differences between these two isozymes. None of the GST isozymes of rat pancreas expressed FAEES activity. Rat pancreas had a significant amount of FAEES activity, but it segregated independently during the purification of GST indicating that these two activities are expressed by different proteins and are not related as suggested previously.  相似文献   

9.
Amino acid sequence of glutathione S-transferase b from guinea pig liver   总被引:1,自引:0,他引:1  
The amino acid sequence of glutathione S-transferase b (GST b) from guinea pig liver was determined by conventional methods. GST b was composed of two identical subunits, each with 217 amino acid residues. As GSTs are generally classified into three classes, alpha, mu, and pi, GST b belonged to class mu and the amino acid sequence of GST b showed about 80% homology with that of rat GST Yb.  相似文献   

10.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1–1, A4–4), mu (M1–1, M2–2) and pi (the allelic variants P1–1/ile, and P1–1/val) classes, and a rat theta (rT2–2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM−1 s−1 for GST A1–1 and 2.14 mM−1 s−1 for GST A4–4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM−1 s−1. Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

11.
Cytosolic glutathione S-transferases were purified from human jejunal mucosa by affinity chromatography on S-hexylglutathione-Sepharose 4B. Chromatofocusing in the pH range 7-4 yielded peaks with apparent pI's of 7.2 (peak 1), 5.2 (peak 2), and 4.4 (peak 3). Each enzymatic fraction was shown to have a homodimeric structure, with subunit mass of 24.9 +/- 0.5 (P1), 27.9 +/- 0.9 (P2), and 23.4 +/- 0.8 (P3) kDa, as determined by SDS-PAGE. The substrate specificity of each peak was tested using discriminating substrates for basic, near-neutral, and acidic GSTs. With cumene hydroperoxide, the diagnostic substrate for the alpha (basic) class of GSTs, P1 showed 8- to 36-fold higher activity than P2 and P3. Ethacrynic acid, the selective substrate for the acidic enzyme (pi), gave highest activity with P3. The inhibitory potentials of sulfobromophthalein, cibacron blue, tributyltin acetate, triphenyltin chloride, and bromphenol blue were also tested. A qualitative resemblance between P1 and alpha, and P3 and pi GSTs was noted. The substrate specificity and inhibiton parameters of P2 corresponded most closely to those of mu-GST. The relative abundances of P1, P2, and P3 (based on CDNB-conjugating activity) were 35, 5, and 60%, respectively.  相似文献   

12.
Isozyme characterization of glutathione S-transferase (GST) isolated from bovine ocular tissue was undertaken. Two isozymes of lens, GST 7.4 and GST 5.6, were isolated and found to be homodimers of a Mr 23,500 subunit. Amino acid sequence analysis of a 20-residue region of the amino terminus was identical for both isozymes and was identical to GST psi and GST mu of human liver. Antibodies raised against GST psi cross-reacted with both lens isozymes. Although lens GST 5.6 and GST 7.4 demonstrated chemical and immunological relatedness, they were distinctly different as evidenced by their pI and comparative peptide fingerprint. A corneal isozyme, GST 7.2, was also isolated and established to be a homodimer of Mr 24,500 subunits. Sequence analysis of the amino-terminal region indicated it to be about 67% identical with the GST pi isozyme of human placenta. Antibodies raised against GST pi cross-reacted with cornea GST 7.2. Another corneal isozyme, GST 8.7, was found to be homodimer of Mr 27,000 subunits. Sequence analysis revealed it to have a blocked amino-terminus. GST 8.7 immunologically cross-reacted with the antibodies raised against cationic isozymes of human liver indicating it to be of the alpha class. Two isozymes of retina, GST 6.8 and GST 6.3, were isolated and identified to be heterodimers of subunits of Mr 23,500 and 24,500. Amino-terminal sequence analysis gave identical results for both retina GST 6.8 and GST 6.3. The sequence analysis of the Mr 23,500 subunit was identical to that obtained for lens GSTs. Similarly, sequence analysis of the Mr 24,500 subunit was identical to that obtained for the cornea GST 7.2 isozyme. Both the retina isozymes cross-reacted with antibodies raised against human GST psi as well as GST pi. The results of these studies indicated that all three major classes of GST isozymes were expressed in bovine eye but the GST genes were differentially expressed in lens, cornea, and retina. In lens only the mu class of GST was expressed, whereas cornea expressed alpha and pi classes and retina expressed mu and pi classes of GST isozymes.  相似文献   

13.
In the adult dog liver cytosol we identified four glutathione S-transferase (GST) subunits, Yd1 (Mr 26,000), Yd2 (Mr 27,000), Yd3 (Mr 28,000), and Ydf (Mr 27,400), and purified GST forms comprising Yd1, Yd2, and Yd3, to apparent homogeneity. Unlike rat transferases the enzyme activity toward 1,2-dichloro-4-nitrobenzene (DCNB) was not retained on the affinity column. Thus the DCNB-active enzyme, GST YdfYdf, from the flow-through fraction of the affinity column was also purified to homogeneity by gel filtration, DE52 chromatography, chromatofocusing, and hydroxylapatite column chromatography. Immunoblot analysis of dog GSTs revealed that the subunits Yd1, Yd2, and Yd3 belong to the pi, alpha, and mu class, respectively. On the contrary, Ydf had no reactivity with antibodies raised against any of the three classes of GST. Each subunit, Yd1, Yd2, Yd3, and Ydf, was distinguishable by its own retention time on reverse-phase high performance liquid chromatography. N-terminal amino acid sequences of the dog GSTS Yd1Yd1 and Yd3Yd3 revealed a high degree of homology to the pi and mu class transferases from rat, human, and mouse, respectively, while the N terminus of Yd2Yd2 is blocked. N-terminal amino acid sequences of GST YdfYdf showed no homology to any of the three classes of GST. The most significant property noted of GST YdfYdf is the high specific activity toward DCNB, exceeding by 1 order of magnitude the corresponding values for the known mu class GSTs. The present results strongly suggest that dog GST YdfYdf is a unique enzyme distinct from the hitherto characterized GST isozymes.  相似文献   

14.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

15.
The oxidation of linoleic acid produces several products with biological activity including the hydroperoxy fatty acid 13-hydroperoxyoctadecadienoic acid (13-HPODE), the hydroxy fatty acid 13-hydroxyoctadecadienoic acid (13-HODE), and the 2,4-dienone 13-oxooctadecadienoic acid (13-OXO). In the present work, the peroxidase activity of glutathione transferases (GST) A1-1, M1-1, M2-2, and P1-1(Val 105) toward 13-HPODE has been examined. The alpha class enzyme is the most efficient peroxidase while the two enzymes from the mu class exhibit weak peroxidase activity toward 13-HPODE. It was also determined that the conjugated diene 13-HODE is not a substrate for GST from the alpha and mu classes but that 13-HODE does inhibit the GST-catalyzed conjugation of CDNB by enzymes from the alpha, mu, and pi classes. Finally, both 13-HODE and 13-OXO were shown to be inducers of GST activity in HT-29 and HCT-116 colon tumor cells. These data help to clarify the role of GST in the metabolic disposition of linoleic acid oxidation products.  相似文献   

16.
The glutathione S-transferases (GST) are a family of isoenzymes serving a major role in the biotransformation of many reactive compounds. The isoenzymes from rat, man and mouse are divided into three classes, alpha, mu and pi, on the basis of similar structural and enzymatic properties. In view of the fact that the individual isoenzymes demonstrate differential though overlapping substrate selectivities, the extent to which biotransformation occurs is dependent on the actual profile of isoenzymes present. Consequently, both genetic factors as well as external factors causing changes in the levels or activities of individual isoenzymes are of relevance with respect to an individual's susceptibility towards electrophilic compounds. This review article deals with a number of determinants of GST isoenzyme patterns and/or activities, including tissue distribution, developmental patterns, hormonal influences, induction and inhibition. In addition, current knowledge on specific properties of class alpha, class mu and class pi isoenzymes is presented.  相似文献   

17.
Glutathione S-transferases in normal and malignant human colon tissue   总被引:1,自引:0,他引:1  
This study focuses on the GST composition of a tissue intrinsically resistant to chemotherapy, the human colon. GSTs were purified from matched pairs of colon tissue (normal and tumor) using glutathione affinity chromatography. The mean GST activity of colon tumors was 1.5-fold higher than that of normal tissue, with tumors of the sigmoid colon showing the greatest increase (2.3-fold). Two-dimensional gel electrophoresis and Western blot analysis of purified enzymes demonstrated the presence of all three GST classes (alpha, mu and pi) in colon, with GST pi being both the predominant isozyme in normal and malignant tissues. The level of alpha class subunits was the same in normal and tumor tissues, while the mu class subunits were decreased in tumors. A protein copurifying with GSTs from both normal and tumor tissue did not crossreact with GST antibodies, but instead reacted with a polyclonal antibody to glyoxylase I. This enzyme existed as a dimer in its native state. Upon boiling, monomeric subunits were produced with a molecular mass of 22.6 kDa and an isoelectric point more acidic than GST pi. Increased amounts of glyoxylase I were also found in tumor vs. normal colon. The apparent elevated levels of these glutathione-associated detoxifying enzymes in colon tumors may contribute to their intrinsic drug resistance.  相似文献   

18.
Treatment of Class Pi glutathione S-transferases (GST) such as rat GST P (7-7), human GST pi and mouse GST MII with 0.05-0.1 mM N-ethylmaleimide (NEM) in 0.1 M Tris-HCl (pH 7.8) resulted in almost complete inactivation of these forms, whereas no or less inactivation occurred for GSTs in Class Alpha and Mu under the same conditions. Inactivated GST P lost its S-hexyl-GSH-Sepharose column affinity. About 0.8 mol of [14C]NEM was found to be covalently bound to 1 mol of GST P subunit when 80% of the activity was lost. Similar treatment with N-dimethyl-amino-3,5-dinitrophenyl maleimide, a colored analogue of NEM, followed by trypsin digestion, HPLC and amino acid sequence analysis revealed that one cysteine residue at the 47th position from the N-terminal of the GST P subunit was preferentially modified. Subunits of GST P and GST pi are known to have 4 cysteine residues at the same corresponding positions. The present results suggest that the 47th cysteine residue may be located in the vicinity of the active site of Class Pi GSTs.  相似文献   

19.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

20.
Glutathione S-transferases in human prostate   总被引:4,自引:0,他引:4  
A number of human prostatic tissue biopsies have been analyzed for glutathione S-transferase activity, using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. Samples from nine patients (age range 61-90) with benign prostatic hypertrophy who had received no prior chemotherapy had a mean glutathione S-transferase activity of 137 +/- 44 nmol/min per mg with a range of 97-237. A qualitative comparison of the glutathione S-transferase of normal prostate and benign prostatic hypertrophy samples was carried out. Approximately 260-fold purification was achieved using glutathione-Sepharose affinity chromatography, with glutathione S-transferase accounting for approximately 0.19-0.33% of the total protein. Substrate specificity determinations suggested similar, but not identical, glutathione S-transferase subunits in normal prostate and benign prostatic hypertrophy. One- and two-dimensional electrophoresis (isoelectric focusing and 12.5% SDS-polyacrylamide gel electrophoresis) identified at least seven stained polypeptides in the purified glutathione S-transferase preparations. These ranged in Mr from approximately 24,000 to 28,500 and in pI from near neutral to basic. Western blot analysis using polyclonal antibodies raised against rat liver glutathione S-transferase suggested crossreactivity with five of the human isoenzymes in both normal prostate and benign prostatic hypertrophy. One of the glutathione S-transferases, present in both normal prostate and benign prostatic hypertrophy, had an Mr of approx. 24,000 and a near-neutral pI and crossreacted immunologically with a polyclonal antibody raised against human placental glutathione S-transferase (Yf, subunit 7 or pi). These data suggest that four glutathione S-transferases are expressed in human prostate, with subunits from each of the major classes alpha, mu and pi. These are characterized as Ya, Yb, Yb' and Yf (analogous alternative nomenclature subunits 1, 3, 4 and 7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号