首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Voltage noise, generator potentials, and hair movements in the Hermissenda statocyst were analyzed. Motile hairs on the cyst's luminal surface moved as rods through +/- 10 degrees Hz when free and at 7 Hz when loaded with the weight of the statoconia (at 120 degrees C). For hair cells oriented opposite to a centrifugal force vector, rotation caused depolarization and increase of voltage noise variance. The depolarizing generator potential and the increase in voltage noise variance were similarly reduced by perfusion with zero external sodium or chloral hydrate. Cooling, perfusion with zero external sodium or chloral hydrate reduced the movement frequencies of the hairs but increased their range of motion. The same treatments reduced voltage noise variance and increased input resistance of the hair cell membrane. The results indicate that voltage noise and hair cell generator potential have a common origin: exertion of force on statocyst hairs by the weight of statoconia. The collision of statoconia with the motile hairs, not the hairs' bending, produces most of the voltage noise.  相似文献   

2.
The hyperpolarizing receptor potential of ciliary photoreceptors of scallop and other mollusks is mediated by a cGMP-activated K conductance; these cells also express a transient potassium current triggered by depolarization. During steady illumination, the outward currents elicited by voltage steps lose their decay kinetics. One interesting conjecture that has been proposed is that the currents triggered by light and by depolarization are mediated by the same population of channels, and that illumination evokes the receptor potential by removing their steady-state inactivation. Exploiting the information that has become available on the phototransduction cascade of ciliary photoreceptors, we demonstrated that the same downstream signaling elements are implicated in the modulation of voltage-elicited currents: direct chemical stimulation both at the level of the G protein and of the final messenger that controls the light-dependent channels (cGMP) also attenuate the falling phase of the voltage-activated current. Application of a protein kinase G antagonist was ineffective, suggesting that a cGMP-initiated phosphorylation step is not implicated. To ascertain the commonality of ionic pathways we used pharmacological blockers. Although millimolar 4-aminopyridine (4-AP) suppressed both currents, at micromolar concentrations only the photocurrent was blocked. Conversely, barium completely and reversibly antagonized the transient voltage-activated current with no detectable effect on the light-evoked current. These results rule out that the same ionic pores mediate both currents; the mechanism of light modulation of the depolarization-evoked K current was elucidated as a time-dependent increase in the light-sensitive conductance that is superimposed on the inactivating K current.  相似文献   

3.
The photoreceptors of many animals adapt, when illuminated, by reducing their sensitivities to light and improving their response speeds. Light adaptation is usually considered to be rapid and complete within minutes. However, under bright light conditions, I show that functionally significant improvements in impulse response amplitude and speed continue over the course of an hour in photoreceptors of the fly, Musca domestica. After sustained illumination, the average information rate, a measure of signalling performance, improved by 28% in a sample of sixteen photoreceptors. This long-term light adaptation is a robust phenomenon across animals and is repeatable within the same cell when light-adapting sessions are separated by a period of darkness. White-noise analysis of voltage responses to light and current stimuli indicate that much of the long-term changes observed are attributable to an improvement in the reliability with which photoreceptors register the timing of photon absorptions. It is also found that the impedance amplitude of the photoreceptor increases during long-term adaptation, suggesting that the area of the photoreceptor's membrane is reduced.  相似文献   

4.
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround-receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 microM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.  相似文献   

5.
The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a decline of the receptor potential toward baseline during prolonged intense illumination with little change in the shape or amplitude of the quantal responses to single photons (quantum bumps). Previous work on the trp and nss mutants suggests that a negative feedback loop may control the rate of bump production. Chemical agents affecting different steps of the phototransduction cascade were used in conjunction with light to identify a possible branching point of the feedback loop and molecular stages which are affected by the mutation. Fluoride ions, which in the dark both excite and adapt the photoreceptors of wild-type flies, neither excite nor adapt the photoreceptors of the trp and nss mutants. The hydrolysis-resistant analogue, GTP gamma S, which excites the photoreceptors of wild-type flies, resulting in noisy depolarization, markedly reduces the light response of both mutant flies. Intracellular recordings revealed, however, that the inhibitory effect of GTP gamma S on the nss mutant was accompanied neither by any significant depolarization nor by an increase in the noise, and thus was very different from the effect of a dim background light. The combination of inositol trisphosphate and diphosphoglycerate (InsP3 + DPG), which efficiently excites the photoreceptors of wild-type Lucilia, also excites the photoreceptors of nss Lucilia mutant. The InsP3 + DPG together act synergistically with light to accelerate the decline of the response to light in the mutant flies. These results suggest that the fly phototransduction pathway involves a feedback regulatory loop, which branches subsequent to InsP3 production and regulates guanine nucleotide-binding protein (G protein)-phospholipase C activity. A defect in this regulatory loop, which may cause an unusually low level of intracellular Ca2+, severely reduces the triggering of bumps in the mutants during intense prolonged illumination.  相似文献   

6.
Summary Photoreceptor cells of the drone,Apismellifera , have a voltage-gated Na+ membrane conductance that can be blocked by tetrodotoxin (TTX) and generates an action potential on abrupt depolarization: an action potential is triggered by the rising phase of a receptor potential evoked by an intense light flash (Autrum and von Zwehl 1964; Baumann 1968). We measured the intracellular voltage response to a small (9%), brief (30 ms) decrease in light intensity from a background, and found that its amplitude was decreased by 1M TTX. The response amplitude was maximal when the background intensity depolarized the cell to –38 mV. With intensities depolarizing the cell membrane to –45 to –33 mV the average response amplitude was decreased by TTX from 1.2mV to 0.5mV. TTX is also known to decrease the voltage noise during steady illumination (Ferraro et al. 1983) but, despite this, the ratio of peak-to-peak signal to noise was, on average, decreased by TTX. The results suggest that drone photoreceptors use voltage-gated Na+ channels for graded amplification of responses to small, rapid changes in light intensity.Abbreviations TTX tetrodotoxin - V i intracellular potential with respect to the bath - V o extracellular potential - V m,V i-V o approximate transmembrane potential - S amplitude of the voltage response to an 8.9% decrease in light intensity - N voltage noise, usually measured as root mean square voltage deviation as described in Methods  相似文献   

7.
Abstract: Adult male Sprague-Dawley rats anesthetized with chloral hydrate and pentobarbital sodium were used as two different treatment groups. Conscious rats were used as a control group. By using baseline (precocaine) concentration as 100%, after cocaine administration (3.0 mg/kg i.v.), the maximal dopamine (DA) increase occurring at the first microdialysis collection period (20 min) in the medial prefrontal cortex was 299 ± 46% for the chloral hydrate group, 168 ± 12% for the pentobarbital sodium group, and 325 ± 23% for the conscious group. At the same time, norepinephrine (NA) increases reached a maximum and were 162 ± 20%, 100 ± 5%, and 141 ± 17%, respectively. The maximal changes of DA and NA in the chloral hydrate group and in the control group were both significantly higher than that in the pentobarbital sodium group. Meanwhile, the cocaine concentration was higher over a 100-min period of time in the chloral hydrate group when compared with the pentobarbital group and the control group. The peak cocaine concentration in dialysate occurred in the same time slot of maximal DA and NA responses, which were 0.65 ± 0.08, 0.30 ± 0.02, and 0.41 ± 0.05 µ M , respectively. Anesthetics suppress the pharmacologic response of neurons, which may explain the difference in catecholamine response between the pentobarbital sodium and the conscious groups. Conversely, because there was no significant difference in DA and NA response between the chloral hydrate group and the conscious group, it may possibly be due to the balancing effect between the higher existing cocaine concentration and the anesthetic suppression on pharmacological response of neurons in the chloral hydrate group. The effect of guide cannula implantation on the cocaine-induced catecholamine response was also evaluated.  相似文献   

8.
We have shown that aq. 100% (w/v) chloral hydrate (2,2,2-trichloroethane-1,1-diol) dissociates bovine heart cytochrome c oxidase. We have developed new procedures of polyacrylamide-gel electrophoresis in the presence of chloral hydrate that permit variation in the pH of the separation, and, by using these procedures, we have observed 15 components in preparations of the enzyme. This number contrasts with the eight bands that were seen on electrophoresis in the presence of SDS (sodium dodecyl sulphate) and urea. We have isolated material from these eight bands and have characterized each by electrophoresis in the presence of chloral hydrate. Twelve of the fifteen components that were seen by electrophoresis in chloral hydrate were identified as constituents of the eight bands seen by electrophoresis in the presence of SDS and urea. Two-dimensional electrophoretic separations confirmed these identifications ans showed that the other three components which were resolved as discrete bands by electrophoresis in the presence of chloral hydrate appeared to be diffusely present in the electrophoretic separations performed in the presence of SDS and urea, which suggested anomalous behaviour in that detergent. Trypsin treatment of cytochrome c oxidase caused total loss, as observed by electrophoretic separations in the presence of chloral hydrate, of a number of components. The trypsin-sensitive components included all of those that behaved anomalously in the presence of SDS and urea. Chloral hydrate is a potent non-ionic dissociating agent for cytochrome c oxidase and its use in polyacrylamide-gel electrophoresis, with variation in the pH of the gel, permits charge-dependent separations that should have general application in the analysis of membrane proteins.  相似文献   

9.
Simultaneous intracellular recordings were made from a bipolar cell and a horizontal cell in the carp retina. The properties of the bipolar cell were studied while injecting current into the horizontal cell. Hyperpolarization of horizontal cells, irrespective of their type, elicited a hyperpolarizing response in on-center bipolar cells and a depolarizing response in off-center bipolar cells. Analyses of the ionic mechanisms of bipolar cell responses revealed that depolarization of horizontal cells simulated and hyperpolarization opposed the effect of central illumination. The effect of polarization was exerted in such a manner that each type of horizontal cells modified the transmission from those photoreceptors from which they receive main inputs. In on- center bipolar cells, for example, the L-type horizontal cells receiving inputs mainly from red cones modified the cone-bipolar transmission accompanied by a conductance change of K+ and/or Cl- channels, and the intermediate horizontal cells receiving inputs from rods modified the rod-bipolar transmission accompanied by a conductance change of Na+ channels. In off-center bipolar cells, the effect of polarization of any type of horizontal cells was mediated mainly by conductance changes of Na+ channels. Feedback mechanisms from horizontal cells to photoreceptors could explain these results reasonably well.  相似文献   

10.
Calcium-dependent potassium current in barnacle photoreceptor   总被引:2,自引:2,他引:0       下载免费PDF全文
When barnacle lateral eye photoreceptors are depolarized to membrane potentials of 0 to +50 mV in the dark, the plot of outward current through the cell membrane against time has two distinct maxima. The first maximum occurs 5-10 ms after the depolarization began. The current then decays to a minimum at approximately 500 ms after the onset of depolarization, and then increases to a second maximum 4-6 s after the depolarization began. If depolarization is maintained, the current again decays to reach a steady value approximately 1 min after depolarization began. The increase in current to the maximum at 4-6s from the minimum at approximately 500 ms is termed the "late current." It is maximum for depolarizations to around +25 mV and is reduced in amplitude at more positive potentials. It is not observed when the membrane is depolarized to potentials more positive than +60 mV. The late current is inhibited by external cobaltous ion and external tetraethylammonium ion, and shows a requirement for external calcium ion. When the calcium-sequestering agent EGTA is injected, the late current is abolished. Illumination of a cell under voltage clamp reduces the amplitude of the late current recorded subsequently in the dark. On the basis of the voltage dependence and pharmacology of the late current, it is proposed that the current is a calcium-dependent potassium current.  相似文献   

11.
The time-course of light-induced changes in membrane voltage and resistance were measured in single photoreceptors in eyecup preparations of Gekko gekko. A small circular stimulus directed toward the impaled receptor produced membrane hyperpolarization. Application of a steady annular light to the receptor periphery resulted in diminution of the receptor's response to the stimulus. The effects of illumination of the surrounding receptors were isolated by directing a small, steady desensitizing light to the impaled receptor and then applying a peripheral stimulus. Brief stimuli produced a transient decrease in resistance with rapid onset and offset, a time-course similar to that of the response diminution. For some cells a depolarization that coincided with the resistance decrease was seen. During illumination with prolonged stimuli the resistance decrease was followed by a slow increase. After offset resistance rose transiently above the original value and then returned slowly to its original value. The slow resistance changes were not accompanied by changes in membrane voltage. The response diminution, resistance decrease, and depolarization were not observed in retinas treated with aspartate or hypoxia. It is therefore concluded that these effects are mediated by horizontal cells. The diminution is achieved by shunting the receptor potential and may play a role in field adaptation.  相似文献   

12.
We have investigated the role of motile cilia in mechanotransduction by statocysts of the nudibranch mollusk Hermissenda crassicornis. Movement of the cilia that experience the weight of statoconia causes increased variance of voltage noise and membrane depolarization of the statocyst hair cell. Two complementary approaches were used to immobilize the cilia. Vanadate anion was iontophoretically injected into hair cells. This reversible inhibitor of vibratile form and to assume a more classic, pliable beat pattern. Voltage noise decreased as the cilia slowed and bent more extremely, nearly disappearing as motility was lost. When the intracellular vanadate concentration approached 10(-5) M, the cilia were arrested in an effective stroke against the cell membrane. The cell no longer depolarized upon gravitational or local mechanical stimulation. Rapid reversal of ciliary inhibition by norepinephrine or slow reversal with time restored both the voltage noise and depolarization response. Cilia were rendered rigid and upright by covalent cross-linkage of their membrane "sleeve" to the 9 + 2 axoneme, using the photoactivated, lipophilic, bifunctional agent 4,4''-dithiobisphenyl azide. In the initial stages of cross-linkage, the cilia remained vibratile but slowed and moved through wider excursions. Voltage noise decreased in frequency but increased in amplitude. When the cilia were fully arrested, voltage noise was minimized while the resting potential and membrane resistance remained essentially constant. Mechanical stimulation of the rigid cilia, normal to the cell membrane, elicited a generator potential of the same amplitude but of greater duration than before treatment. Because cilia that are partially arrested by vanadate undergo increased bending, although the hair cell shows decreased noise, neither the axoneme nor the ciliary membrane proper would appear to be sites of direct transduction. In cells with beating but stiffened cilia, however, the voltage noise becomes amplified, implying an increased efficiency of transduction. We suggest that active but rigid flexure of the axoneme is involved in amplification and continuous signal detection. The basal insertion area is the most likely transduction site, being the terminal leverage point through which force is applied to the plasma membrane via the flexing ciliary shaft.  相似文献   

13.
张青峰  李文宇  李官成  姬可平 《四川动物》2008,27(1):154-156,160
目的 为本校生物工程系实验动物学课程小鼠尾部皮肤移植实验课提供一种合适的操作方法.方法 分别用0.7%、1%、1.5%戊巴比妥钠和10%水合氯醛对小鼠进行麻醉试验,选出合适的麻醉方法;再进行小鼠尾部皮肤移植,对比玻璃套管法和创可贴法2种包扎方法的效果,以选出合适的手术方法.结果 0.7%和1%戊巴比妥钠麻醉持续时间过短,1.5%戊巴比妥钠和10%水合氯醛能维持足够手术操作所需的时间,但1.5%戊巴比妥钠易导致动物死亡,故采用10%水合氯醛麻醉小鼠较合适;玻璃套管法包扎的效果较创可贴法为好且更简便.结论 10%水合氯醛麻醉结合玻璃套管法包扎进行小鼠尾部皮肤移植是一种有效、简便、经济的小鼠尾部皮肤移植手术实验方法;此方法技术失败率低,适合学生实验课采用.  相似文献   

14.
In Limulus ventral photoreceptors, illumination not only increases a specialized light-activated sodium conductance but also modulates voltage-dependent conductances. Previous work has demonstrated that the delayed rectifier current is reduced by light; we report here that the early voltage-dependent inward current is also reduced by light. Furthermore, by maintained during continuous depolarization and that this maintained inward current can be reduced by light. EGTA injection was found to increase the maintained inward current.  相似文献   

15.
Methane production from pyruvate by mixed rumen bacteria in vitro was nearly totally inhibited by chloral hydrate (0.1 mumole/ml of incubation fluid). This effect was accompanied by an accumulation of gaseous hydrogen and an increase in propionic acid production. Infusion of chloral hydrate (4 g/day) into the rumen of a sheep produced the same effects. Evidence is presented for a direct toxic effect of chloral hydrate upon methane bacteria. Results are discussed in terms of fermentation balances.  相似文献   

16.
In the honey bee drone, the decrease in sensitivity to light of a retinula cell exposed to background illumination was found to be accurately reflected by the difference in amplitude between the initial transient depolarization and the lowest steady depolarization evoked by the background light. It is shown that both the decrease in sensitivity to light and the accompanying drop in potential from the transient to the plateau can be prevented by injecting EGTA intracellularly. A decrease in duration and amplitude of responses to short test flashes such as observed immediately after illumination was found to occur too when Ca or Na, but not K, Li, or Mg injected into dark-adapted retinula cells. Injection of EGTA into a retinula cell maintained a steady state of light adaptation, was found to cause an increase in amplitude and duration of the response to a short test flash, thus producing the effects of dark adaptation. It is suggested that, in the retina of the honey bee drone, an increase in intracellular calcium concentration plays a central role in light adaptation and that an increase in intracellular sodium concentration, resulting from the influx of sodium ions during the responses to light, could lead to this increase in intracellular free calcium.  相似文献   

17.
Light-evoked changes in membrane voltage were recorded intracellularly from rod photoreceptors in the isolated retina preparation of the toad, Bufo marinus, during superfusion with a solution containing pharmacological agents that blocked voltage-dependent conductances. Under these conditions, the amplitude of the hyperpolarizing photoresponse became much greater than under control conditions. The results of several experiments support the conclusion that this increase in photoresponse amplitude was due primarily to a voltage that was produced when the electrogenic current from the rods' Na+/K+ pump flowed across an increased membrane resistance (Torre, V. 1982. Journal of Physiology. 333:315). At the onset of a period of continuous illumination, the rod membrane first hyperpolarized and then began to repolarize, and after 180 s of illumination, the membrane voltage had recovered by 60-72% of its initial hyperpolarization. There did not appear to be any significant decrease in rod membrane resistance associated with this repolarization. Both the enhanced hyperpolarization at light onset and the slow repolarization during maintained illumination were blocked by superfusion with 10.0 microM strophanthidin. These data support the hypothesis that the activity of the rods' Na+/K+ pump declines progressively during maintained illumination. It is likely that the decline in pump activity produces significant changes in [K+]o in the subretinal space during maintained illumination.  相似文献   

18.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

19.
Recent experiments indicate that voltage noise in photoreceptors results from variation of total conductance, due to random spontaneous opening and closing of light-sensitive ionic channels, whose rate is governed in turn by modulation of internal-transmitter concentration, by photon noise, and by fluctuations in free calcium concentration. Fluctuation of the steady-state number of open channels is thus affected by three main factors. Statistical analysis of steady-state voltage response indicates that these factors predominate, in the above order, at high, medium, and low intensities, respectively. Furthermore, total noise is heavily suppressed at high intensities due to receptor non-linearity.  相似文献   

20.
Remote ischemic preconditioning of hind limbs (RIPC) is an effective method for preventing brain injury resulting from ischemia. However, in numerous studies RIPC has been used on the background of administered anesthetics, which also could exhibit neuroprotective properties. Therefore, investigation of the signaling pathways triggered by RIPC and the effect of anesthetics is important. In this study, we explored the effect of anesthetics (chloral hydrate and Zoletil) on the ability of RIPC to protect the brain from injury caused by ischemia and reperfusion. We found that RIPC without anesthesia resulted in statistically significant decrease in neurological deficit 24 h after ischemia, but did not affect the volume of brain injury. Administration of chloral hydrate or Zoletil one day prior to brain ischemia produced a preconditioning effect by their own, decreasing the degree of neurological deficit and lowering the volume of infarct with the use of Zoletil. The protective effects observed after RIPC with chloral hydrate or Zoletil were similar to those observed when only the respective anesthetic was used. RIPC was accompanied by significant increase in the level of brain proteins associated with the induction of ischemic tolerance such as pGSK-3β, BDNF, and HSP70. However, Zoletil did not affect the level of these proteins 24 h after injection, and chloral hydrate caused increase of only pGSK-3β. We conclude that RIPC, chloral hydrate, and Zoletil produce a significant neuroprotective effect, but the simultaneous use of anesthetics with RIPC does not enhance the degree of neuroprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号