首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amiloride does not block taste transduction in the mouse (Slc:ICR)   总被引:1,自引:0,他引:1  
1. The receptor potential of the mouse taste cell was recorded with an intracellular microelectrode while taste stimuli were applied to the tongue surface of the anesthetized mouse. 2. A membrane depolarization accompanied by an increase in membrane resistance was observed after a sucrose stimulus. 3. A sodium-chloride stimulus initiated a membrane depolarization accompanied by a decrease in membrane resistance. 4. Amiloride elicits a depolarization of the membrane and is accompanied by an increase in membrane resistance. 5. Pre-adapting the tongue to amiloride, which is known as a potent sodium channel blocker, did not alter the responses to sodium-chloride and other taste stimuli.  相似文献   

2.
Responses recorded from visual cells of Limulus (presumably eccentric cells) following abrupt and maintained illumination consist of depolarization with superimposed spikes. Both the depolarization and the frequency of firing are greater at the beginning of the response than later on. Frequency of firing decreases with time also during stimulation with constant currents, but the decay is then less than it is during constant illumination. Early and steady-state responses do not increase in the same proportion following illumination at different intensities. Membrane conductance is higher during the early peak of the response than in steady state. Early and late potential changes appear to tend to the same equilibrium value. The results support the assumptions that: (a) discharge of impulses is the consequence of depolarization of a specialized "pacemaker region" in the axon; (b) depolarization induced by light is the consequence of increase of membrane conductance. The major conductance changes occurring during constant illumination may be due to corresponding changes of the "stimulus" supplied by the photoreceptor or to changes of sensitivity of the eccentric cell's membrane to this stimulus. Some accessory phenomena may be the consequence of regenerative properties of the nerve cell itself.  相似文献   

3.
Tonic nerve activity in skate electroreceptors is thought to result from spontaneous activity of the lumenal membranes of the receptor cells which is modulated by applied stimuli. When physiological conditions are simulated in vitro, the receptor epithelium produces a current which flows inward across the lumenal surface. This epithelial current exhibits small spontaneous sinusoidal fluctuations about the mean that are associated with corresponding but delayed fluctuations in postsynaptic response. Small voltage stimuli produce damped oscillations in the epithelial current similar in time-course to the spontaneous fluctuations. For lumen-negative, excitatory stimuli, these responses are predominantly an increase over the mean inward current. For inhibitory stimuli they are predominantly a decrease. Increased inward current across the lumenal membranes of the receptor cells increases depolarization of the presynaptic membranes in the basal faces leading to increased release of transmitter and an excitatory postsynaptic response. Decreased inward current decreases depolarization of the presynaptic membranes leading to a reduction in transmitter release and an inhibitory postsynaptic response. Clear changes in postsynaptic response are detectable during stimuli as small as 5 microV with saturation occurring at +/- 400 microV. The evoked oscillations in epithelial current are damped and the postsynaptic responses decline during maintained stimuli with large off-responses occurring at stimulus termination. The initial peak of the off-response is similar to the response produced by onset of an oppositely directed stimulus. These observations substantiate the role of receptor cell excitability in the detection of small voltage changes.  相似文献   

4.
Visual stimuli of short duration seem to persist longer after the stimulus offset than stimuli of longer duration. This visual persistence must have a physiological explanation. In ferrets exposed to stimuli of different durations we measured the relative changes in the membrane potentials with a voltage sensitive dye and the action potentials of populations of neurons in the upper layers of areas 17 and 18. For durations less than 100 ms, the timing and amplitude of the firing and membrane potentials showed several non-linear effects. The ON response became truncated, the OFF response progressively reduced, and the timing of the OFF responses progressively delayed the shorter the stimulus duration. The offset of the stimulus elicited a sudden and strong negativity in the time derivative of the dye signal. All these non-linearities could be explained by the stimulus offset inducing a sudden inhibition in layers II-III as indicated by the strongly negative time derivative of the dye signal. Despite the non-linear behavior of the layer II-III neurons the sum of the action potentials, integrated from the peak of the ON response to the peak of the OFF response, was almost linearly related to the stimulus duration.  相似文献   

5.
Small trabeculae of rabbit left atrium immersed in TKBa solution (Tyrode with 10 mM K+ and 1 mM Ba2+) were used to study frequency dependence of "membrane" slow response excitability at long cycle lengths (greater than 1 s). In TKBa, stimuli generate graded, low- amplitude (2-15 mV) subliminal responses of variable long duration (up to 450 ms). A full all-or-none slow response is generated when a subliminal response depolarizes the membrane to about--35 mV. Subliminal response amplitude and rate of rise augment with stimulus intensity-duration product. For a fixed stimulus, the subliminal response is larger and faster at higher frequencies. Sudden changes in stimulus frequency or time course induce changes in subliminal response tha take four to eight cycles to attain steady state. For a fixed stimulus, slow response latency shortens progressively during the first few cycles after a sudden increase in frequency or when a rested preparation is excited (latency adaptation phenomenon, LAP). Slow response threshold stimulus requirements decrease during LAP (excitability hysteresis). The degree of excitability hysteresis is dependent on stimulation frequency and is more pronounced at higher frequencies. Frequency sensitivity of subliminal response (which causes frequency sensitivity of slow response excitability) is explained in terms of a transient state of enhancement set up by each stimulus. The enhanced state decays between stimuli with a half-time of approximately 4 s, thus allowing cumulative effects to become evident at rates above 0.1 Hz.  相似文献   

6.
The time-course of the light-induced changes in membrane voltage and resistance were measured for single photoreceptors in the retina of Gekko gekko. In the surgically isolated retina, small stimuli directed toward the impaled receptor produced a membrane hyperpolarization the time-course of which was identical to that of the increase in membrane resistance. In the eyecup preparation nearly identical time-courses were evoked only after perfusion of the vitreous surface with solution having high (Mg++). Disparate time-courses were obtained in (a) the isolated retina when large or displaced stimuli were used, and (b) the eyecup preparation when it was treated normally (see Pinto and Pak. 1974. J. Gen. Physiol. 64:49) and when it was exposed to aspartate ions or hypoxia. These results are consistent with the hypothesis that the receptor potential (elicited in the impaled receptor as a result of quanta only it captures) is generated by a single ionic process that decreases membrane conductance. These measurements provide a means to distinguish the receptor potential from interactions. From direct measurements of membrane time constant and total resistance in darkness, total membrane capacitance was calculated. The mean capacitance was 7.1 x 10-5 µF. This high value is consistent with anatomical observations of membrane infoldings at the base of gecko photoreceptors.  相似文献   

7.
Getz WM 《Chemical senses》1999,24(5):497-508
A model is presented that predicts the instantaneous spike rate of an olfactory receptor neuron (ORN) in response to the quality and concentration of an odor stimulus. The model accounts for the chemical kinetics of ligand-receptor binding and activation processes, and implicitly the initiation of second messenger cascades that lead to depolarization and/or hyperpolarization of the ORN membrane. Both of these polarizing processes are included in the most general form of the model, as well as a process that restores the voltage to its negative resting state. The spike rate is assumed to be linearly proportional to the level of voltage depolarization above a critical negative voltage level. The model includes the simplifying assumption that activation of bound ligand-receptor complexes by G-proteins and other enabling molecules follows a Monod function that has the ratio of enabling molecules to bound unactivated ligand-receptor complexes as its argument. Parameters are selected that provide an excellent fit of the model to previously published empirical data on the response of cockroach ORNs to pulsed 1-hexanol stimuli. The sensitivity of model output to various model parameters is investigated and changes to parameters are discussed that would improve the ability of ORNs to follow rapidly pulsed stimuli.  相似文献   

8.
The effect of lanthanum on the light response of blowfly (Calliphora erythrocephala) photoreceptors was studied. The electrophysiological behaviour of the photoreceptors in the presence of La can be summarized as follows: 1. Upon long stimulation the photoreceptors responded with a 'transient receptor potential', i.e. the cells depolarized at the onset of the stimulus and then repolarized to (or below) the resting potential. This effect was dependent on stimulus intensity and occurred only at high intensities. During illumination membrane noise was reduced. 2. The light-induced changes in membrane potential were paralleled by changes in membrane resistance. 3. The time course of the receptor response was slowed down. 4. Light adaptation led to an increase in response latency. 5. The recovery of the receptor response after light adaptation was slowed down. 6. The sensitivity of the receptor cells measured by the response to short light stimuli was reduced. In summary, the electrophysiological behaviour of Calliphora photoreceptors in the presence of La was very similar to that of the photoreceptors of the trp (transient receptor potential) mutant of Drosophila melanogaster. This result suggests that La and trp mutation affect the same cellular processes in the photoreceptors.  相似文献   

9.
Intracellular potentials are recorded from photoreceptors in a superfused preparation of the retina of a locust compound eye. Chloral hydrate and alkyl alcohols induce a rapid, superfusing reversible depolarization of these photoreceptors when dissolved in the saline. Analysis of voltage noise accompanying depolarization by chloral hydrate suggests that depolarizing ionic pathways are opened briefly and randomly in time in the photoreceptor membranes. This conclusion is supported by measurements of the cell resistance and of voltage noise amplitude as a function of membrane potential. Replacement of superfusate sodium by choline reversibly reduces the effects of chloral hydrate, suggesting that the ionic pathways opened are permeable by sodium. The voltage noise induced by chloral hydrate is compared to that during depolarization by steady illumination of the same cell. As the illumination intensity is increased, the amplitude and the shape of the power spectrum of light-induced voltage noise approach those of drug-induced noise at the same depolarization level. The possibility that these phenomena represent alterations in the mechanism of phototransduction is discussed.  相似文献   

10.
Brief, intracellularly injected pulses of cyclic GMP transiently depolarized toad retinal rod outer segments (ROS). The depolarization is antagonized by light, perhaps by the activation of phosphodiesterase (PDE), as shown in the biochemical studies of others. As measured by the antagonism of cyclic GMP pulses by light, PDE activity peaks after the peak of the receptor potential and has approximately the same recovery time as the membrane voltage after weak illumination, but recovers more slowly than the membrane potential after strong illumination, as sensitivity does in other preparations. A cyclic GMP pulse delivered just after the hyperpolarizing phase of the receptor potential tends to turn off the light response. The kinetics of recovery from this turnoff are similar to those of the initial phase of the receptor potential. This similarity suggests that the initial phase of the receptor potential is controlled by light-activated PDE. Both EGTA and saturating doses of cyclic GMP block the light response, but only cyclic GMP increases response latency, which suggests that if calcium is involved in transduction, it is controlled by the hydrolysis of cyclic GMP. After brief pulses of cyclic AMP, a new steady state of increased depolarization occasionally develops. The effects described above also occur under these conditions. The results are consistent with the hypothesis that light-activated hydrolysis of cGMP is an intermediary process in transduction.  相似文献   

11.
Light-evoked changes in membrane voltage were recorded intracellularly from rod photoreceptors in the isolated retina preparation of the toad, Bufo marinus, during superfusion with a solution containing pharmacological agents that blocked voltage-dependent conductances. Under these conditions, the amplitude of the hyperpolarizing photoresponse became much greater than under control conditions. The results of several experiments support the conclusion that this increase in photoresponse amplitude was due primarily to a voltage that was produced when the electrogenic current from the rods' Na+/K+ pump flowed across an increased membrane resistance (Torre, V. 1982. Journal of Physiology. 333:315). At the onset of a period of continuous illumination, the rod membrane first hyperpolarized and then began to repolarize, and after 180 s of illumination, the membrane voltage had recovered by 60-72% of its initial hyperpolarization. There did not appear to be any significant decrease in rod membrane resistance associated with this repolarization. Both the enhanced hyperpolarization at light onset and the slow repolarization during maintained illumination were blocked by superfusion with 10.0 microM strophanthidin. These data support the hypothesis that the activity of the rods' Na+/K+ pump declines progressively during maintained illumination. It is likely that the decline in pump activity produces significant changes in [K+]o in the subretinal space during maintained illumination.  相似文献   

12.
During drought, the plant hormone abscisic acid (ABA) induces rapid stomatal closure and in turn reduces transpiration. Stomatal closure is accompanied by large ion fluxes across the plasma membrane, carried by K+ and anion channels. We recorded changes in the activity of these channels induced by ABA, for guard cells of intact Vicia faba plants. Guard cells in their natural environment were impaled with double-barrelled electrodes, and ABA was applied via the leaf surface. In 45 out of 85 cells tested, ABA triggered a transient depolarization of the plasma membrane. In these cells, the membrane potential partially recovered in the presence of ABA; however, a full recovery of the membrane potentials was only observed after removal of ABA. Repetitive ABA responses could be evoked in single cells, but the magnitude of the response varied from one hormone application to the other. The transient depolarization correlated with the activation of anion channels, which peaked 5 min after introduction of the stimulus. In guard cells with a moderate increase in plasma membrane conductance (DeltaG < 5 nS), ABA predominantly activated voltage-independent (slow (S)-type) anion channels. During strong responses (DeltaG > 5 nS), however, ABA activated voltage-dependent (rapid (R)-type) in addition to S-type anion channels. We conclude that the combined activation of these two channel types leads to the transient depolarization of guard cells. The nature of this ABA response correlates with the transient extrusion of Cl- from guard cells and a rapid but confined reduction in stomatal aperture.  相似文献   

13.
Intensity Characteristics of the Noctuid Acoustic Receptor   总被引:1,自引:0,他引:1       下载免费PDF全文
Spiking activity of the more sensitive acoustic receptor is described as a function of stimulus intensity. The form of the intensity characteristic depends strongly on stimulus duration. For very brief stimuli, the integral of stimulus power over stimulus duration determines the effectiveness. No response saturation is observed. With longer stimuli (50 msec), a steady firing rate is elicited. The response extends from the spontaneous rate of 20–40 spikes/sec to a saturated firing rate of nearly 700 spikes/sec. The characteristic is monotonic over more than 50 db in stimulus intensity. With very long stimuli (10 sec), the characteristics are nonmonotonic. Firing rates late in the stimulus decrease in response to an increase in stimulus intensity. The non-monotonic characteristics are attributed to intensity-related changes in response adaptation.  相似文献   

14.
The crustacean single nerve fiber gives rise to trains of impulses during a prolonged depolarizing stimulus. It is well known that the alkaloid veratrine itself causes a prolonged depolarization; and consequently it was of interest to investigate the effect of this chemically produced depolarization on repetitive firing in the single axon and compare it with the effect of depolarization by an applied stimulating current or by a potassium-rich solution. It was found that veratrine depolarization, though similar in some respects to a potassium-rich depolarization of depolarizing current effect, was in many respects quite different. (1) At low veratrine concentration, less than 1 Mg%, the negative after potential following a spike action potential was prolonged and augmented. At higher concentrations or after a long period of time, veratrine caused a prolonged steady state depolarization of the membrane, the “veratrine response”. The prolonged plateau depolarization response could be elicited with or without an action potential spike by a short or long duration stimulating pulse, but only if the veratrine depolarization was prevented or offset by an applied conditioning hyperpolarizing inward current. (2) The “veratrine response” resembled the potassium-rich solution response in the plateau-like contour of the depolarization and the very low membrane resistance during this plateau phase. Like the potassium response, it was possible to obtain a typical hyperpolarizing response with an inwardly directed current pulse if applied during the plateau phase. During the negative after potential augmented with veratrine, however, this hyperpolarizing response was not observed. (3) In contrast to the potassium response, however, the “veratrine response” is intimately associated with the sodium concentration in the external medium. The depolarization in millivolts is linearly related to the log of the concentration of external sodium. Moreover, during veratrine action there is a continuous and progressive inactivation of the sodium mechanism which ultimately terminates repetitive firing and abolishes the spike action potential. Then even with conditioning hyperpolarization only the slow response may be elicited in veratrine, occasionally with a spike superimposed if sodium is present, but without repetitive firing. (4) It is concluded that veratrine action is the result of a chemical or metabolic reaction by the alkaloid in the membrane. It is suggested that veratrine may inhibit the sodium extrusion mechanism, or may itself compete for sites in the membrane with calcium and/or sodium. This explains the inhibiting effect of high calcium, the abolition of the “veratrine response” with low temperature and high calcium combined and the progressive inactivation of the sodium system.  相似文献   

15.
An electrogenic sodium pump in Limulus ventral photoreceptor cells   总被引:13,自引:11,他引:2  
A hyperpolarization can be recorded intracellularly following either a single bright light stimulus or the intracellular injection of Na+. This after-hyperpolarization is abolished by bathing in 5 x 10-6 M strophanthidin or removal of extracellular K+. Both treatments also lead to a small, rapid depolarization of the dark-adapted cell. When either treatment is prolonged, light responses can still be elicited, although with repetitive stimuli the responses are slowly and progressively diminished in size. The rate of diminution is greater for higher values of [Ca++]out; with [Ca++]out = 0.1 mM, there is almost no progressive diminution of repetitive responses produced by either K+-free seawater or strophanthidin. We propose that an electrogenic Na+ pump contributes directly to dark-adapted membrane voltage and also generates the after-hyperpolarizations, but does not directly generate the receptor potential. Inhibition of this pump leads to intracellular accumulation of sodium ions, which in turn leads to an increase in intracellular Ca++ (provided there is sufficient extracellular Ca++). This increase in intracellular calcium probably accounts for the progressive decrease in the size of the receptor potential seen when the pump is inhibited.  相似文献   

16.
Intracellular recordings of mouse taste cell responses were made using glass microelectrodes filled with procion yellow dye solution. Only responses recorded from taste buds with fluorescent cells, as observed in subsequent histological preparations, were used in this study. The mouse taste cell depolarizes when stimulated with sucrose and is accompanied by either a resistance increase or no change. On the other hand, a NaCl stimulus produces a depolarization, hyperpolarization or null response and is accompanied by either a membrane resistance decrease or no change. Four sugars other than sucrose (maltose, fructose, glucose and lactose) produced the depolarization or null responses and were accompanied by an increase or no change in membrane resistance. From the above observations, it is suggested that each taste cell produces its own characteristic response profiles and membrane resistance changes for the five sugars and NaCl tested.  相似文献   

17.
Summary The light-evoked response pattern and morphology of one interplexiform cell were studied in the goldfish retina by intracellular recording and staining. The membrane potential of the cell spontaneously oscillated in the dark. In response to a brief light stimulus, the membrane potential initially gave a slow transient depolarization. During maintained light, the oscillations showed a tendency to be suppressed; the response of the cell to the offset of the stimulus was not so prominent. The perikaryon of the interplexiform cell was positioned at the proximal boundary of the inner nuclear layer. The cell had two broad layers of dendrites; one was diffuse in the inner plexiform layer, the other was more sparse in the outer plexiform layer. The morphological and electrophysiological characteristics of the cell are discussed in relation to dopaminergic interplexiform cells and the light-evoked release pattern of dopamine in the teleost retina.  相似文献   

18.
Double- and triple-barreled ion-sensitive microelectrodes were used to measure changes in extracellular K+ and Na+ concentrations ([K+]o, [Na+]o) in brown fat. Redox states of different respiratory enzymes were measured simultaneously in order to correlate ion movements with metabolic activity. Trains of stimuli applied to the efferent nerves evoked two distinct increases in [K+]o. A first, small, rapid increase occurred within 10 s and accompanied a first, rapid membrane depolarization. A second, slow increase of [K+]o occurred several minutes after stimulation and accompanied a second, slow depolarization. A few seconds after stimulation onset, while the membrane was repolarizing and shifts in redox states indicated increases in lipolysis and respiration, [K+]o decreased. The [K+]o decrease was accompanied by an increase in [Na+]o, and could be partly blocked by ouabain. Phentolamine, an alpha-antagonist that blocks the first depolarization, also blocked the first, rapid [K+]o increase and part of the subsequent decrease. Propranolol, a beta-antagonist, had little effect on the first depolarization and the first increase in [K+]o, but blocked part of the subsequent [K+]o decrease and the second, slow [K+]o increase. The changes in [K+]o were almost completely abolished in the presence of both antagonists. It is concluded that brown adipocytes take up K+ and simultaneously lose Na+ in response to the interaction of noradrenaline with alpha- and beta-receptors, and this indicates a very early stimulation of the Na+ pump.  相似文献   

19.
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.  相似文献   

20.
A model is proposed for the responses of vertebrate photoreceptor cell to light stimuli. It is based on the findings that the resistance of visual cell membrane increases during illumination. In this model the relation between the changes of membrane resistance and light intensity through synaptic connection is considered. This model suggests the general relation between the peak amplitude of receptor response and the intensity of flash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号