首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
The IkappaB kinase (IKK) complex is a key regulator of signal transduction pathways leading to the induction of NF-kappaB-dependent gene expression and production of pro-inflammatory cytokines. It therefore represents a major target for the development of anti-inflammatory therapeutic drugs and may be targeted by pathogens seeking to diminish the host response to infection. Previously, the vaccinia virus (VACV) strain Western Reserve B14 protein was characterised as an intracellular virulence factor that alters the inflammatory response to infection by an unknown mechanism. Here we demonstrate that ectopic expression of B14 inhibited NF-kappaB activation in response to TNFalpha, IL-1beta, poly(I:C), and PMA. In cells infected with VACV lacking gene B14R (vDeltaB14) there was a higher level of phosphorylated IkappaBalpha but a similar level of IkappaBalpha compared to cells infected with control viruses expressing B14, suggesting B14 affects IKK activity. Direct evidence for this was obtained by showing that B14 co-purified and co-precipitated with the endogenous IKK complex from human and mouse cells and inhibited IKK complex enzymatic activity. Notably, the interaction between B14 and the IKK complex required IKKbeta but not IKKalpha, suggesting the interaction occurs via IKKbeta. B14 inhibited NF-kappaB activation induced by overexpression of IKKalpha, IKKbeta, and a constitutively active mutant of IKKalpha, S176/180E, but did not inhibit a comparable mutant of IKKbeta, S177/181E. This suggested that phosphorylation of these serine residues in the activation loop of IKKbeta is targeted by B14, and this was confirmed using Ab specific for phospho-IKKbeta.  相似文献   

2.
Rapid activation of the IkappaB kinase (IKK) complex is considered an obligatory step in the activation of nuclear factor-kappaB (NF-kappaB) in response to diverse stimuli. Since oxidants have been implicated in the regulation of NF-kappaB, the focus of the present study was the activation of IKK by tumor necrosis factor alpha (TNFalpha) in the presence or absence of hydrogen peroxide (H(2)O(2)). Exposure of mouse alveolar epithelial cells to H(2)O(2) was not sufficient to activate IKK, degrade IkappaBalpha, or activate NF-kappaB. In contrast, TNFalpha induced IKK activity rapidly and transiently resulting in IkappaBalpha degradation and NF-kappaB activation. Importantly, in the presence of H(2)O(2), the ability of TNFalpha to induce IKK activity was markedly decreased and resulted in prevention of IkappaBalpha degradation and NF-kappaB activation. Neither tyrosine kinases nor phosphatidylinositol 3-kinases, known regulators of NF-kappaB by oxidants, were involved in IKK inhibition by H(2)O(2). Direct addition of H(2)O(2) to the immunoprecipitated IKK complex inhibited enzyme activity. Inhibition of IKK activity by H(2)O(2) was associated with direct oxidation of cysteine residues present in the IKK complex and occurred only in enzymatically active IKK. In contrast to previously published observations, our findings demonstrate that the oxidant H(2)O(2) reduces NF-kappaB activation by inhibiting activated IKK activity.  相似文献   

3.
4.
5.
Redox regulation of nuclear factor kappaB (NF-kappaB) has been described, but the molecular mechanism underlying such regulation has remained unclear. We recently showed that a novel disulfide reductase, TRP14, inhibits tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation, and we identified the dynein light chain LC8, which interacts with the NF-kappaB inhibitor IkappaBalpha, as a potential substrate of TRP14. We now show the molecular mechanism by which NF-kappaB activation is redox-dependently regulated through LC8. LC8 inhibited TNFalpha-induced NF-kappaB activation in HeLa cells by interacting with IkappaBalpha and thereby preventing its phosphorylation by IkappaB kinase (IKK), without affecting the activity of IKK itself. TNFalpha induced the production of reactive oxygen species, which oxidized LC8 to a homodimer linked by the reversible formation of a disulfide bond between the Cys(2) residues of each subunit and thereby resulted in its dissociation from IkappaBalpha. Butylated hydroxyanisol, an antioxidant, and diphenyleneiodonium, an inhibitor of NADPH oxidase, attenuated the phosphorylation and degradation of IkappaBalpha by TNFalpha stimulation. In addition LC8 inhibited NF-kappaB activation by other stimuli including interleukin-1beta and lipopolysaccharide, both of which generated reactive oxygen species. Furthermore, TRP14 catalyzed reduction of oxidized LC8. Together, our results indicate that LC8 binds IkappaBalpha in a redox-dependent manner and thereby prevents its phosphorylation by IKK. TRP14 contributes to this inhibitory activity by maintaining LC8 in a reduced state.  相似文献   

6.
7.
8.
9.
10.
11.
Hypochlorous acid (HOCl) is produced by the neutrophil enzyme, myeloperoxidase, and reacts with amines to generate chloramines. These oxidants react readily with thiols and methionine and can affect cell-regulatory pathways. In the present study, we have investigated the ability of HOCl, glycine chloramine (Gly-Cl) and taurine chloramine (Tau-Cl) to oxidize IkappaBalpha, the inhibitor of NF-kappaB (nuclear factor kappaB), and to prevent activation of the NF-kappaB pathway in Jurkat cells. Glycine chloramine (Gly-Cl) and HOCl were permeable to the cells as determined by oxidation of intracellular GSH and inactivation of glyceraldehyde-3-phosphate dehydrogenase, whereas Tau-Cl showed no detectable cell permeability. Both Gly-Cl (20-200 muM) and HOCl (50 microM) caused oxidation of IkappaBalpha methionine, measured by a shift in electrophoretic mobility, when added to the cells in Hanks buffer. In contrast, a high concentration of Tau-Cl (1 mM) in Hanks buffer had no effect. However, Tau-Cl in full medium did modify IkappaBalpha. This we attribute to chlorine exchange with other amines in the medium to form more permeable chloramines. Oxidation by Gly-Cl prevented IkappaBalpha degradation in cells treated with TNFalpha (tumour necrosis factor alpha) and inhibited nuclear translocation of NF-kappaB. IkappaBalpha modification was reversed by methionine sulphoxide reductase, with both A and B forms required for complete reduction. Oxidized IkappaBalpha persisted intracellularly for up to 6 h. Reversion occurred in the presence of cycloheximide, but was prevented if thioredoxin reductase was inhibited, suggesting that it was due to endogenous methionine sulphoxide reductase activity. These results show that cell-permeable chloramines, either directly or when formed in medium, could regulate NF-kappaB activation via reversible IkappaBalpha oxidation.  相似文献   

12.
IkappaB kinase-1 and IkappaB kinase-2 (IKK1 and IKK2; also called IKKalpha and IKKbeta, respectively) are part of the signal complex that regulates NF-kappaB activity in many cell types, including fibroblast-like synoviocytes (FLS). We determined which of these two kinases is responsible for cytokine-induced NF-kappaB activation in synoviocytes and assessed the functional consequences of IKK1 or IKK2 overexpression and inhibition. FLS were infected with adenovirus constructs encoding either wild-type (wt) IKK1 or IKK2, the dominant negative (dn) mutant of both kinases, or a control construct encoding green fluorescence protein. Analysis of the NF-kappaB pathway revealed that cytokine-induced IKK activation, IkappaB degradation, and NF-kappaB activation was prevented in cells expressing the IKK2 dn mutant, whereas baseline NF-kappaB activity was increased by IKK2 wt. In addition, synthesis of IL-6 and IL-8, as well as expression of ICAM-1 and collagenase, was only increased by IKK2 wt, and their cytokine-induced production was abrogated by IKK2 dn mutant. However, the IKK1 dn mutant did not inhibit cytokine-mediated activation of NF-kappaB or any of the functional assays. These data indicate that IKK2 is the key convergence pathway for cytokine-induced NF-kappaB activation. Furthermore, IKK2 regulates adhesion molecule, matrix metalloproteinase, and cytokine production in FLS.  相似文献   

13.
14.
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.  相似文献   

15.
We have been interested in elucidating how simultaneous stimuli modulate inflammation-related signal transduction pathways in lung parenchymal cells. We previously demonstrated that exposing respiratory epithelial cells to 95% oxygen (hyperoxia) synergistically increased tumor necrosis factor-alpha (TNF-alpha)-mediated activation of NF-kappaB and NF-kappaB-dependent gene expression by a mechanism involving increased activation of IkappaB kinase (IKK). Because the signal transduction mechanisms induced by IL-1beta are distinct to that of TNF-alpha, herein we sought to determine whether hyperoxia modulates IL-1beta-dependent signal transduction. In A549 cells, simultaneous treatment with hyperoxia and IL-1beta caused increased activation of IKK, prolonged the degradation of IkappaBalpha, and prolonged the nuclear translocation and DNA binding of NF-kappaB compared with cells treated with IL-1beta alone in room air. Hyperoxia did not affect IL-1beta-dependent degradation of the interleukin receptor-associated kinase differently from treatment with IL-beta alone. In contrast to the effects on the IKK/IkappaBalpha/NF-kappaB pathway, simultaneous treatment with hyperoxia and IL-1beta did not augment NF-kappaB-dependent gene expression compared with treatment with IL-1beta alone. Similar observations were made in a different human respiratory epithelial cell line, BEAS-2B cells. In addition, simultaneous treatment with hyperoxia and IL-1beta caused hyperphosphorlyation of the NF-kappaB p65 subunit compared with treatment with IL-1beta alone. In summary, concomitant treatment of A549 cells with hyperoxia and IL-1beta augments activation of IKK, prolongs degradation of IkappaBalpha, and prolongs nuclear translocation and DNA binding of NF-kappaB. This activation, however, is not coupled to increased expression of NF-kappaB-dependent genes, and the mechanism of this decoupling is not related to decreased phosphorylation of p65.  相似文献   

16.
17.
18.
19.
20.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号