首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
Rate and pattern of mutation at microsatellite loci in maize   总被引:30,自引:0,他引:30  
Microsatellites are important tools for plant breeding, genetics, and evolution, but few studies have analyzed their mutation pattern in plants. In this study, we estimated the mutation rate for 142 microsatellite loci in maize (Zea mays subsp. mays) in two different experiments of mutation accumulation. The mutation rate per generation was estimated to be 7.7 x 10(-4) for microsatellites with dinucleotide repeat motifs, with a 95% confidence interval from 5.2 x 10(-4) to 1.1 x 10(-3). For microsatellites with repeat motifs of more than 2 bp in length, no mutations were detected; so we could only estimate the upper 95% confidence limit of 5.1 x 10(-5) for the mutation rate. For dinucleotide repeat microsatellites, we also determined that the variance of change in the number of repeats (sigma(m)2) is 3.2. We sequenced 55 of the 73 observed mutations, and all mutations proved to be changes in the number of repeats in the microsatellite or in mononucleotide tracts flanking the microsatellite. There is a higher probability to mutate to an allele of larger size. There is heterogeneity in the mutation rate among dinucleotide microsatellites and a positive correlation between the number of repeats in the progenitor allele and the mutation rate. The microsatellite-based estimate of the effective population size of maize is more than an order of magnitude less than previously reported values based on nucleotide sequence variation.  相似文献   

2.
In a recent study, we reported that the combined average mutation rate of 10 di-, 6 tri-, and 8 tetranucleotide repeats in Drosophila melanogaster was 6.3 x 10(-6) mutations per locus per generation, a rate substantially below that of microsatellite repeat units in mammals studied to date (range = 10(-2)-10(-5) per locus per generation). To obtain a more precise estimate of mutation rate for dinucleotide repeat motifs alone, we assayed 39 new dinucleotide repeat microsatellite loci in the mutation accumulation lines from our earlier study. Our estimate of mutation rate for a total of 49 dinucleotide repeats is 9.3 x 10(-6) per locus per generation, only slightly higher than the estimate from our earlier study. We also estimated the relative difference in microsatellite mutation rate among di-, tri-, and tetranucleotide repeats in the genome of D. melanogaster using a method based on population variation, and we found that tri- and tetranucleotide repeats mutate at rates 6.4 and 8.4 times slower than that of dinucleotide repeats, respectively. The slower mutation rates of tri- and tetranucleotide repeats appear to be associated with a relatively short repeat unit length of these repeat motifs in the genome of D. melanogaster. A positive correlation between repeat unit length and allelic variation suggests that mutation rate increases as the repeat unit lengths of microsatellites increase.   相似文献   

3.
We have previously used NotI as the marker enzyme (recognizing GCGGCCGC) in a genome scanning approach for detection of mutations induced in mouse spermatogonia and estimated the mutation induction rate as about 0.7 x 10(-5) per locus per Gy. To see whether different parts of the genome have different sensitivities for mutation induction, we used AflII (recognizing CTTAAG) as the marker enzyme in the present study. After the screening of 1,120 spots in each mouse offspring, we found five mutations among 92,655 spots from the unirradiated paternal genome, five mutations among 218,411 spots from the unirradiated maternal genome, and 13 mutations among 92,789 spots from 5 Gy-exposed paternal genome. Among the 23 mutations, 11 involved mouse satellite DNA sequences (AT-rich), and the remaining 12 mutations also involved AT-rich but non-satellite sequences. Both types of sequences were found as multiple, similar-sequence blocks in the genome. Counting each member of cluster mutations separately and excluding results on one hypermutable spot, the spontaneous mutation rates were estimated as 3.2 (+/- 1.9) x 10(-5) and 2.3 (+/- 1.0) x 10(-5) per locus per generation in the male and female genomes, respectively, and the mutation induction rate as 1.1 (+/- 1.2) x 10(-5) per locus per Gy. The induction rate would be reduced to 0.9 x 10(-5) per locus per Gy if satellite sequence mutations were excluded from this analysis. The results indicate that mutation induction rates do not largely differ between GC-rich and AT-rich regions: 1 x 10(-5) per locus per Gy or less, which is close to 1.08 x 10(-5) per locus per Gy, the current estimate for the mean mutation induction rate in mice.  相似文献   

4.
Zhang Y  Lu CY  Cao DC  Xu P  Wang S  Li HD  Zhao ZX  Sun XW 《动物学研究》2010,31(5):561-564
利用150个微卫星分子标记在F1代家系的基因型分析过程中,共有27600个等位基因从亲本向子代传递,其中在5个微卫星座位上检测到6个突变的等位基因。对突变的等位基因数目进行统计分析后得出:鲤鱼平均每个世代每个微卫星座位的突变速率为2.53×10-4。在发现突变的5个位点中,经测序发现,突变序列中插入1个以上的重复单元就导致了突变的发生。这些突变表明,鲤鱼的微卫星突变没有遵循严格的渐变突变模型(stepwise mutation model,SMM)。该文关于鲤鱼微卫星突变速率和模式的研究将会对统计鲤鱼有效群体的统计提供有效参数。  相似文献   

5.
A subclone of a human diploid lymphoblastoid cell line, TK-6, with consistently high cloning efficiency has been used to estimate the rates of somatic mutations on the basis of protein variation detected by two-dimensional polyacrylamide gel electrophoresis. A panel of 267 polypeptide spots per gel was screened, representing the products of approximately 263 unselected loci. The rate of human somatic mutation in vitro was estimated by measuring the proportion of protein variants among cell clones isolated at various times during continuous exponential growth of a TK-6 cell population. Three mutants of spontaneous origin were observed, giving an estimated spontaneous rate of 6 x 10(-8) electrophoretic mutations per allele per cell generation (i.e., 1.2 x 10(-7) per locus per cell generation). Following treatment of cells with N-ethyl-N-nitrosourea, a total of 74 confirmed variants at 54 loci were identified among 1143 clones analyzed (approximately 601,000 allele tests). The induced variants include 65 electromorphs which exhibit altered isoelectric charge and/or apparent molecular weight and nine nullimorphs for each of which a gene product was not detected at its usual location on the gel. The induced frequency for these 65 structural gene mutants is 1.1 x 10(-4) per allele. An excess of structural gene mutations at ten known polymorphic loci and repeat mutations at these and other loci suggest nonrandomness of mutation in human somatic cells. Nullimorphs occurring at three heterozygous loci in TK-6 cells may be caused by genetic processes other than structural gene mutation.  相似文献   

6.
Within recent years, microsatellite have become one of the most powerful genetic markers in biology. For several mammalian species, microsatellite mutation rates have been estimated on the order of 10(- 3)-10(-5). A recent study, however, demonstrated mutation rates in Drosophila melanogaster of at least one order of magnitude lower than those in mammals. To further test this result, we examined mutation rates of different microsatellite loci using a larger sample size. We screened 24 microsatellite loci in 119 D. melanogaster lines maintained for approximately 250 generations and detected 9 microsatellite mutations. The average mutation rate of 6.3 x 10(-6) is identical to the mutation rate from a previous study. Most interestingly, all nine mutations occurred at the same allele of one locus (DROYANETSB). This hypermutable allele has 28 dinucleotide repeats and is among the longest microsatellite reported in D. melanogaster. The allele-specific mutation rate of 3.0 x 10(-4) per generation is within the range of mammalian mutation rates. Future microsatellite analyses will have to account for the dramatic differences in allele-specific mutation rates.   相似文献   

7.
Estimation of mutation rate from rare protein variants.   总被引:2,自引:0,他引:2       下载免费PDF全文
A method for estimating the mutation rate for protein loci from the number of rare alleles in the population is presented. It seems to have a number of advantages compared with Kimura and Ohta's method. Applying this method to Neel's data from American Indians in South America and to Nozawa's data from Japanese macaques, the mutation rate for electrophoretically detectable alleles is estimated to be (2 approximately 3) x 10(-6) per locus per generation. This estimate may not include many severely or substantially deleterious mutations.  相似文献   

8.
Owing to occasional spontaneous mutations in genes encoding DNA repair, any population of a reasonable size is expected to harbor a sub-population of genetic mutators. Using a genetically modified strain of Escherichia coli K-12, we have estimated the frequency of mutators to be about 3x10(-5). By and large, this corresponds to a mutation rate from non-mutators to mutators of 5x10(-6) per bacterium per generation. Using a mutS∷Tn10 derivative as representative for mutators, we estimated the increase in mutation rates in mutators to be 19- to 82-fold, depending on the test-mutation under consideration. The load associated with this increase in mutation rate resulted in a growth inhibition of 1%. From these data, we estimated that the rate of detrimental mutations in the non-mutators to be 2x10(-4)-8x10(-4). The situations where adaptive mutations may result in an increase in the frequency of mutators are discussed.  相似文献   

9.
We estimated the rates per base per generation of specific types of mutations, using our direct estimate of the overall mutation rate for hemophilia B and information on the mutations present in the United Kingdom's population as well as those reported year by year in the hemophilia B world database. These rates are as follows: transitions at CpG sites 9.7x10-8, other transitions 7.3x10-9, transversions at CpG sites 5.4x10-9, other transversions 6.9x10-9, and small deletions/insertions causing frameshifts 3.2x10-10. By taking into account the ratio of male to female mutation rates, the above figures were converted into rates appropriate for autosomal DNA-namely, 1.3x10-7, 9.9x10-9, 7.3x10-9, 9.4x10-9, 6.5x10-10, where the latter is the rate for all small deletion/insertion events. Mutation rates were also independently estimated from the sequence divergence observed in randomly chosen sequences from the human and chimpanzee X and Y chromosomes. These estimates were highly compatible with those obtained from hemophilia B and showed higher mutation rates in the male, but they showed no evidence for a significant excess of transitions at CpG sites in the spectrum of Y-sequence divergence relative to that of X-chromosome divergence. Our data suggest an overall mutation rate of 2.14x10-8 per base per generation, or 128 mutations per human zygote. Since the effective target for hemophilia B mutations is only 1.05% of the factor IX gene, the rate of detrimental mutations, per human zygote, suggested by the hemophilia data is approximately 1.3.  相似文献   

10.
A number of applications of analysis of human Y-chromosome microsatellite loci to human evolution and forensic science require reliable estimates of the mutation rate and knowledge of the mutational mechanism. We therefore screened a total of 4,999 meioses from father/son pairs with confirmed paternity (probability >/=99. 9%) at 15 Y-chromosomal microsatellite loci and identified 14 mutations. The locus-specific mutation-rate estimates were 0-8. 58x10-3, and the average mutation rate estimates were 3.17x10-3 (95% confidence interval [CI] 1.89-4.94x10-3) across 8 tetranucleotide microsatellites and 2.80x10-3 (95% CI 1.72-4.27x10-3) across all 15 Y-chromosomal microsatellites studied. Our data show a mutational bias toward length increase, on the basis of observation of more repeat gains than losses (10:4). The data are in almost complete agreement with the stepwise-mutation model, with 13 single-repeat changes and 1 double-repeat change. Sequence analysis revealed that all mutations occurred in uninterrupted homogenous arrays of >/=11 repeats. We conclude that mutation rates and characteristics of human Y-chromosomal microsatellites are consistent with those of autosomal microsatellites. This indicates that the general mutational mechanism of microsatellites is independent of recombination.  相似文献   

11.
Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.  相似文献   

12.
In 10,844 parent/child allelic transfers at nine short-tandem-repeat (STR) loci, 23 isolated STR mismatches were observed. The parenthood in each of these cases was highly validated (probability >99.97%). The event was always repeat related, owing to either a single-step mutation (n=22) or a double-step mutation (n=1). The mutation rate was between 0 and 7 x 10(-3) per locus per gamete per generation. No mutations were observed in three of the nine loci. Mutation events in the male germ line were five to six times more frequent than in the female germ line. A positive exponential correlation between the geometric mean of the number of uninterrupted repeats and the mutation rate was observed. Our data demonstrate that mutation rates of different loci can differ by several orders of magnitude and that different alleles at one locus exhibit different mutation rates.  相似文献   

13.
Gow JL  Noble LR  Rollinson D  Jones CS 《Genetica》2005,124(1):77-83
Genotyping of 11 microsatellites in 432 offspring from 28 families of the hermaphroditic, freshwater snail Bulinus forskalii detected 10 de novo mutant alleles. This gave an estimated mutation rate of 1.1 × 10–3 per locus per gamete per generation. There was a trend towards repeat length expansion and, unlike most studies, multi-step mutations predominated, suggesting that the microsatellite mutation process does not conform to a strict stepwise mutation model. Interestingly, the ten mutant alleles appear to have arisen from only six independent germline mutation events within the microsatellite array, with seven of them residing in three mutational clusters. Our results extend observations of clustered microsatellite mutations to another taxonomic group and type of mating system, self-fertile gastropods, and provide compelling evidence of premeiotic germline mutations, a phenomenon that could greatly impact upon our understanding of mutation dynamics but which has received little attention.  相似文献   

14.
Seo TK  Thorne JL  Hasegawa M  Kishino H 《Genetics》2002,160(4):1283-1293
Using pseudomaximum-likelihood approaches to phylogenetic inference and coalescent theory, we develop a computationally tractable method of estimating effective population size from serially sampled viral data. We show that the variance of the maximum-likelihood estimator of effective population size depends on the serial sampling design only because internal node times on a coalescent genealogy can be better estimated with some designs than with others. Given the internal node times and the number of sequences sampled, the variance of the maximum-likelihood estimator is independent of the serial sampling design. We then estimate the effective size of the HIV-1 population within nine hosts. If we assume that the mutation rate is 2.5 x 10(-5) substitutions/generation and is the same in all patients, estimated generation lengths vary from 0.73 to 2.43 days/generation and the mean (1.47) is similar to the generation lengths estimated by other researchers. If we assume that generation length is 1.47 days and is the same in all patients, mutation rate estimates vary from 1.52 x 10(-5) to 5.02 x 10(-5). Our results indicate that effective viral population size and evolutionary rate per year are negatively correlated among HIV-1 patients.  相似文献   

15.
Estimate of the mutation rate per nucleotide in humans   总被引:41,自引:0,他引:41  
Nachman MW  Crowell SL 《Genetics》2000,156(1):297-304
Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.  相似文献   

16.
A sample of (1) children whose parents had been proximally exposed (i.e., less than 2,000 m from the hypocenter) at the time of the atomic bombings of Hiroshima and Nagasaki and (2) a suitable comparison group have been examined for the occurrence of mutations altering the electrophoretic mobility or activity of a series of 30 proteins. The examination of the equivalent of 667,404 locus products in the children of proximally exposed persons yielded three mutations altering electrophoretic mobility; the corresponding figure for the comparison group was three mutations in 466,881 tests. The examination of a subset of 60,529 locus products for loss of enzyme activity in the children of proximally exposed persons yielded one mutation; no mutations were encountered in 61,741 determinations on the children of the comparison group. When these two series are compared, the mutation rate observed in the children of proximally exposed persons is thus 0.60 x 10(-5)/locus/generation, with 95% confidence intervals between 0.2 and 1.5 x 10(-5), and that in the comparison children is 0.64 x 10(-5)/locus/generation, with 95% intervals between 0.1 and 1.9 x 10(-5). The average conjoint gonad doses for the proximally exposed parents are estimated to be 0.437 Gy of gamma radiation and 0.002 Gy of neutron radiation. If a relative biological effectiveness of 20 is assigned to the neutron radiation, the combined total gonad dose for the parents becomes 0.477 Sv. (Organ absorbed doses are expressed in gray [1 Gy = 100 rad]; where dose is a mixture of gamma and neutron radiation, it is necessary because of the differing relative biological effectiveness of gamma and neutron radiation to express the combined gamma-neutron gonad exposures in sieverts [1 Sv = 100 rem]).  相似文献   

17.
Joseph SB  Hall DW 《Genetics》2004,168(4):1817-1825
We performed a 1012-generation mutation-accumulation (MA) experiment in the yeast, Saccharomyces cerevisiae. The MA lines exhibited a significant reduction in mean fitness and a significant increase in variance in fitness. We found that 5.75% of the fitness-altering mutations accumulated were beneficial. This finding contradicts the widely held belief that nearly all fitness-altering mutations are deleterious. The mutation rate was estimated as 6.3 x 10(-5) mutations per haploid genome per generation and the average heterozygous fitness effect of a mutation as 0.061. These estimates are compatible with previous estimates in yeast.  相似文献   

18.
Although microsatellites are one of the most popular tools in genetic studies, their mutational dynamics and evolution remain unclear. Here, we apply extensive pedigree genotyping to identify and analyze the patterns and factors associated with de novo germline mutations across nine microsatellite loci in a wild population of lesser kestrels (Falco naumanni). A total of 10 germline mutations events were unambiguously identified in four loci, yielding an average mutation rate of 2.96x10(-3). Across loci, mutation rate was positively correlated with locus variability and average allele size. Mutations were primarily compatible with a stepwise mutation model, although not exclusively involved single-step changes. Unexpectedly, we found an excess of maternally transmitted mutations (male-to-female ratio of 0.1). One of the analyzed loci (Fn2.14) resulted hypermutable (mutation rate=0.87%). This locus showed a size-dependent mutation bias, with longer alleles displaying deletions or additions of a small number of repeat than shorter alleles. Mutation probability at Fn2.14 was higher for females and increased with parental (maternal) age but was not associated with individual physical condition, multilocus heterozygosity, allele length or allele span. Overall, our results do not support the male-biased mutation rate described in other organisms and suggest that mutation dynamics at microsatellite loci are a complex process which requires further research.  相似文献   

19.
137Cs-gamma irradiation of bacteriophage T4 induces large deletions plus a variety of types of point mutations. All mutations arise with single-hit kinetics, and all by a misrepair process. The estimated point mutation rate is 1.5 X 10(-9) per locus per rad.  相似文献   

20.
Male mice were X-irradiated with 3.0 + 3.0 Gy or 5.1 + 5.1 Gy (fractionation interval 24 h). The offspring were screened for dominant cataract and recessive specific locus mutations. In the 3.0 + 3.0-Gy spermatogonial treatment group, 3 dominant cataract mutations were confirmed in 15 551 offspring examined and 29 specific locus mutations were recovered in 18 139 offspring. In the post-spermatogonial treatment group, 1 dominant cataract mutation was obtained in 1120 offspring and 1 recessive specific locus mutation was recovered in 1127 offspring. The induced mutation rate per locus, per gamete, per Gy calculated for recessive specific locus mutations is 2.0 X 10(-5) in post-spermatogonial stages and 3.7 X 10(-5) in spermatogonia. For dominant cataract mutations, assuming 30 loci, the induced mutation rate is 5.0 X 10(-6) in the post-spermatogonial stages and 1.1 X 10(-6) in spermatogonia. In the 5.1 + 5.1-Gy spermatogonial treatment group, 3 dominant cataract mutations were obtained in 11 205 offspring, whereas in 13 201 offspring 27 recessive specific locus mutations were detected in the spermatogonial group. In the post-spermatogonial treatment group no dominant cataract mutation was observed in 425 offspring and 2 recessive specific locus mutations were detected in 445 offspring. The induced mutation rate per locus, gamete and Gy in spermatogonia for recessive specific locus mutations is 2.8 X 10(-5) and for dominant cataract mutations 0.9 X 10(-6). In post-spermatogonial stages, the mutation rate for recessive specific locus alleles is 6.2 X 10(-5). In the concurrent untreated control group, in 11 036 offspring no dominant cataract mutation and in 23 518 offspring no recessive specific locus mutation was observed. Litter size and the number of carriers at weaning have been determined in the confirmation crosses of the obtained dominant cataract mutants as indicators of viability and penetrance effects. Two mutants had a statistically significantly reduced litter size and one mutant had a statistically significantly reduced penetrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号