首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The United Nations climate treaty may soon include a mechanism for compensating tropical nations that succeed in reducing carbon emissions from deforestation and forest degradation, source of nearly one fifth of global carbon emissions. We review the potential for this mechanism [reducing emissions from deforestation and degradation (REDD)] to provoke ecological damages and promote ecological cobenefits. Nations could potentially participate in REDD by slowing clear‐cutting of mature tropical forest, slowing or decreasing the impact of selective logging, promoting forest regeneration and restoration, and expanding tree plantations. REDD could also foster efforts to reduce the incidence of forest fire. Potential ecological costs include the accelerated loss (through displaced agricultural expansion) of low‐biomass, high‐conservation‐value ecosystems, and substitution of low‐biomass vegetation by monoculture tree plantations. These costs could be avoided through measures that protect low‐biomass native ecosystems. Substantial ecological cobenefits should be conferred under most circumstances, and include the maintenance or restoration of (1) watershed functions, (2) local and regional climate regimes, (3) soils and biogeochemical processes, (4) water quality and aquatic habitat, and (5) terrestrial habitat. Some tools already being developed to monitor, report and verify (MRV) carbon emissions performance can also be used to measure other elements of ecosystem function, making development of MRV systems for ecological cobenefits a concrete possibility. Analysis of possible REDD program interventions in a large‐scale Amazon landscape indicates that even modest flows of forest carbon funding can provide substantial cobenefits for aquatic ecosystems, but that the functional integrity of the landscape's myriad small watersheds would be best protected under a more even spatial distribution of forests. Because of its focus on an ecosystem service with global benefits, REDD could access a large pool of global stakeholders willing to pay to maintain carbon in forests, thereby providing a potential cascade of ecosystem services to local stakeholders who would otherwise be unable to afford them.  相似文献   

2.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

3.
Deforestation rates in insular Southeast Asia between 2000 and 2010   总被引:1,自引:0,他引:1  
Insular Southeast Asia experienced the highest level of deforestation among all humid tropical regions of the world during the 1990s. Owing to the exceptionally high biodiversity in Southeast Asian forest ecosystems and the immense amount of carbon stored in forested peatlands, deforestation in this region has the potential to cause serious global consequences. In this study, we analysed deforestation rates in insular Southeast Asia between 2000 and 2010 utilizing a pair of 250 m spatial resolution land cover maps produced with regional methodology and classification scheme. The results revealed an overall 1.0% yearly decline in forest cover in insular Southeast Asia (including the Indonesian part of New Guinea) with main change trajectories to plantations and secondary vegetation. Throughout the region, peat swamp forests experienced clearly the highest deforestation rates at an average annual rate of 2.2%, while lowland evergreen forests declined by 1.2%/yr. In addition, the analysis showed remarkable spatial variation in deforestation levels within the region and exposed two extreme concentration areas with over 5.0% annual forest loss: the eastern lowlands of Sumatra and the peatlands of Sarawak, Borneo. Both of these areas lost around half of their year 2000 peat swamp forest cover by 2010. As a whole this study has shown that deforestation has continued to take place on high level in insular Southeast Asia since the turn of the millennium. These on‐going changes not only endanger the existence of numerous forest species endemic to this region, but they further increase the elevated carbon emissions from deforested peatlands of insular Southeast Asia thereby directly contributing to the rising carbon dioxide concentration in the atmosphere.  相似文献   

4.
Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 kmyr?1 in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large‐scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land‐use scenarios for the Brazilian Amazon, including a normative ‘Sustainability’ scenario in which we envision major socio‐economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear‐cut deforestation, secondary vegetation dynamics, and the old‐growth forest degradation. We use the computational models to estimate net deforestation‐driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 kmyr?1) and a change in the current dynamics of the secondary vegetation – in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old‐growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear‐cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary vegetation and forest degradation) need to be better understood as they potentially will play a decisive role in the future regional carbon balance.  相似文献   

5.
This research refers to an object‐based automatic method combined with a national expert validation to produce regional and national forest cover change statistics over Congo Basin. A total of 547 sampling sites systematically distributed over the whole humid forest domain are required to cover the six Central African countries containing tropical moist forest. High resolution imagery is used to accurately estimate not only deforestation and reforestation but also degradation and regeneration. The overall method consists of four steps: (i) image automatic preprocessing and preinterpretation, (ii) interpretation by national expert, (iii) statistic computation and (iv) accuracy assessment. The annual rate of net deforestation in Congo Basin is estimated to 0.09% between 1990 and 2000 and of net degradation to 0.05%. Between 2000 and 2005, this unique exercise estimates annual net deforestation to 0.17% and annual net degradation to 0.09%. An accuracy assessment reveals that 92.7% of tree cover (TC) classes agree with independent expert interpretation. In the discussion, we underline the direct causes and the drivers of deforestation. Population density, small‐scale agriculture, fuelwood collection and forest's accessibility are closely linked to deforestation, whereas timber extraction has no major impact on the reduction in the canopy cover. The analysis also shows the efficiency of protected areas to reduce deforestation. These results are expected to contribute to the discussion on the reduction in CO2 emissions from deforestation and forest degradation (REDD+) and serve as reference for the period.  相似文献   

6.
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.  相似文献   

7.
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.  相似文献   

8.
人工林目前存在结构单一、土壤退化、生物多样性降低等人类普遍关注的生态问题。马尾松(Pinus massoniana)是长江上游低山丘陵区退耕还林的主要人工林树种。研究采伐林窗对植物物种组成和更新的影响, 对马尾松低效人工林的改造, 提升其生态服务功能具有重要的意义。该文以采伐39年生的马尾松人工林形成的7种不同大小的林窗为研究对象, 分析了不同季节林窗内的植物生活型组成及多样性变化。结果表明: 1)马尾松人工林林下植物以高位芽植物居多, 其次是地面、地下芽植物, 一年生植物较少而缺少地上芽植物。在林窗形成初期, 林窗的高位芽植物比例明显低于林下, 大林窗的高位芽植物比例稍高于小林窗, 地下芽和一年生植物的比例低于小林窗。2)林下的物种丰富度和物种多样性指数显著低于大林窗。不同林窗下植物的丰富度指数、优势度指数、多样性指数也存在显著差异。3)夏季林窗下植物多样性最高, 其次是秋季, 春季多样性最低。1225-1600 m2的大林窗能够促进马尾松人工林植物多样性恢复和植被更新。  相似文献   

9.
Perturbations in the carbon budget of the tropics   总被引:1,自引:0,他引:1  
The carbon budget of the tropics has been perturbed as a result of human influences. Here, we attempt to construct a ‘bottom‐up’ analysis of the biological components of the budget as they are affected by human activities. There are major uncertainties in the extent and carbon content of different vegetation types, the rates of land‐use change and forest degradation, but recent developments in satellite remote sensing have gone far towards reducing these uncertainties. Stocks of carbon as biomass in tropical forests and woodlands add up to 271 ± 16 Pg with an even greater quantity of carbon as soil organic matter. Carbon loss from deforestation, degradation, harvesting and peat fires is estimated as 2.01 ± 1.1 Pg annum?1; while carbon gain from forest and woodland growth is 1.85 ± 0.09 Pg annum?1. We conclude that tropical lands are on average a small carbon source to the atmosphere, a result that is consistent with the ‘top‐down’ result from measurements in the atmosphere. If they were to be conserved, they would be a substantial carbon sink. Release of carbon as carbon dioxide from fossil fuel burning in the tropics is 0.74 Pg annum?1 or 0.57 MgC person?1 annum?1, much lower than the corresponding figures from developed regions of the world.  相似文献   

10.
《植物生态学报》2014,38(5):477
人工林目前存在结构单一、土壤退化、生物多样性降低等人类普遍关注的生态问题。马尾松(Pinus massoniana)是长江上游低山丘陵区退耕还林的主要人工林树种。研究采伐林窗对植物物种组成和更新的影响, 对马尾松低效人工林的改造, 提升其生态服务功能具有重要的意义。该文以采伐39年生的马尾松人工林形成的7种不同大小的林窗为研究对象, 分析了不同季节林窗内的植物生活型组成及多样性变化。结果表明: 1)马尾松人工林林下植物以高位芽植物居多, 其次是地面、地下芽植物, 一年生植物较少而缺少地上芽植物。在林窗形成初期, 林窗的高位芽植物比例明显低于林下, 大林窗的高位芽植物比例稍高于小林窗, 地下芽和一年生植物的比例低于小林窗。2)林下的物种丰富度和物种多样性指数显著低于大林窗。不同林窗下植物的丰富度指数、优势度指数、多样性指数也存在显著差异。3)夏季林窗下植物多样性最高, 其次是秋季, 春季多样性最低。1225-1600 m2的大林窗能够促进马尾松人工林植物多样性恢复和植被更新。  相似文献   

11.
Agricultural conversion of tropical forests is a major driver of biodiversity loss. Slowing rates of deforestation is a conservation priority, but it is also useful to consider how species diversity is retained across the agricultural matrix. Here, we assess how bird diversity varies in relation to land use in the Taita Hills, Kenya. We used point counts to survey birds along a land‐use gradient that included primary forest, secondary vegetation, agroforest, timber plantation and cropland. We found that the agricultural matrix supports an abundant and diverse bird community with high levels of species turnover, but that forest specialists are confined predominantly to primary forest, with the matrix dominated by forest visitors. Ordination analyses showed that representation of forest specialists decreases with distance from primary forest. With the exception of forest generalists, bird abundance and diversity are lowest in timber plantations. Contrary to expectation, we found feeding guilds at similar abundances in all land‐use types. We conclude that whilst the agricultural matrix, and agroforest in particular, makes a strong contribution to observed bird diversity at the landscape scale, intact primary forest is essential for maintaining this diversity, especially amongst species of conservation concern.  相似文献   

12.
Arthropod assemblages were examined in Lama forest reserve, a protected area situated in the Dahomey gap, southern Benin, composed of plantations, degraded forest and remnants of natural forest. The objectives were to compare assemblages in relation to forest type and use, to elucidate the value of forest plantations for biodiversity conservation and to identify indicator species for specific forest habitats. Arthropods were collected over an 11-month period, using standardized sets of traps (pitfall, emergence, Malaise and flight intercept traps). Nine different habitats were studied, including natural and degraded forest, forest plantations (Tectona grandis and Senna siamea) of different age, and isolated forest fragments. Our analysis focused on detritivorous and xylophagous arthropods but also included ground beetles and heteropterans, totalling 393 species. We found no differences in species richness among natural and degraded forest habitats in the centre of the reserve (Noyau central). Outside of the Noyau central, species richness was highest in old teak plantations and isolated forest fragments and lowest in young teak and fuelwood plantations. Detrended correspondence analysis (DCA) separated three main groups: (1) natural forest, (2) degraded forest and young plantations, and (3) old plantations and isolated forest fragments. Multiple regression of DCA scores of the first two axes on environmental variables identified one natural and three disturbance-related predictors of arthropod assemblages in Lama forest: soil type (texture), canopy height, naturalness (proportion of Guineo-Congolian plant species) and understorey vegetation cover. We identified 15 indicator species for six different forest habitats. The highest numbers were found in abandoned settlements and old teak plantations. β-diversity was similar among the three DCA ordination groups (degraded forest excluded). Values for β-diversity were relatively high, suggesting that all major forest habitats contribute significantly to regional species pools and should therefore be protected. To enhance arthropod diversity, we propose that management practices in Lama forest should aim to encourage the development of species-rich understorey vegetation of the Guineo-Congolian phytogeographical region.  相似文献   

13.
六盘山森林植被碳密度空间分布特征及其成因   总被引:2,自引:0,他引:2  
深入了解干旱缺水地区森林植被碳密度的空间分布特征是定量评价森林固碳能力、合理协调林水矛盾的重要基础。然而,目前有关干旱缺水地区的植被碳密度的研究仅限于典型样地上的碳储量、碳密度的比较,对区域尺度上森林植被碳密度的空间分布特征了解较少。为此,利用宁夏六盘山自然保护区2005年森林资源一类清查数据,计算了森林植被碳密度,并分析了其与林分结构特征和环境因子的关系。结果表明,六盘山的森林植被碳密度(t/hm2)平均为26.17(0.67—120.63),其中天然次生林为30.2(7.6—120.6),显著高于人工林的15.7(0.67—66.7)。森林植被碳密度随林龄增加而线性增大,天然林和人工林的平均增速分别为1.11和2.48 t hm-2a-1,而且,部分未成熟林的林分植被碳密度已接近甚至超过全国同类森林类型成熟林的植被碳密度平均值。随林分密度增加,森林植被碳密度增大,但在林分密度1000株/hm2后,森林植被碳密度不再增大,达到其最大值,其中,天然林为75.4 t/hm2,人工林为34.6 t/hm2;林冠郁闭度对森林植被碳密度的影响与林分密度相似,森林植被碳密度增长的郁闭度拐点为0.5。水分条件是影响六盘山森林植被碳密度的重要因素,森林植被碳密度(t/hm2)由700 mm以上地点的32.5(7.6—120.6)下降至年降水量500—600 mm地点的10.9(0.67—42.9),而且随年降水量减少,最大森林植被碳密度所对应的海拔高度呈增加趋势,如在年降水量为700、600—700和600 mm的地区,最大碳密度所在海拔高度分别为1900—2100、2100—2300和2300—2500 m。综上所述,研究区森林植被还有较大的固碳潜力,从提高森林固碳功能角度来看,林分郁闭度不宜超过0.5。  相似文献   

14.
In the Rio Ranchería watershed of the Sierra Nevada de Santa Marta, between 500 and 1500 m, savanna vegetation is interspersed with moist forests. The savannas are composed of native savanna grasses like Aristida adscensionis L., Arundinella sp., Panicum olyroides Kunth, and Schyzachyrium microstachyum (Desv.) Roseng., Arrill & Izag and the African Melinis minutiflora P. Beauv. There is also Curatella americana L. and Byrsonima crassifolia (L.) H.B.K., two typical tree species of the neotropical savannas. Although moist forest patches occur more often on lower slopes and narrow valley bottoms, they can also be found on mid- and upper-slopes and less often on ridges. Thus, these forest patches are not gallery forests as are found throughout the neotropics, but the result of deforestation and fractionation of a continuous forest. A comparison of soil profiles between the savannas and remnant forest patches on the same slope, showed the disappearance of the A and B horizons (approx. 50 cm) under savanna vegetation. The sharp difference between the savanna and forest soils at the Rio Ranchería does not appear to be due to a change in soil water status along a toposequence or differences in the underlying bedrock. We hypothesize that the savannas of the Rio Ranchería watershed, are the result of deforestation and land practices on infertile soils derived from granite. The savannization process was likely initiated by Amerindians by means of the frequent use of fire or clearing lands for the cultivation of maize. The introduction of cattle by Spaniards (c. 1530) and the frequent use of fire to maintain grazing fields, contributed to further degradation of the habitat. While some tropical landscapes recovered their forest cover when human pressure was removed approximately 500 years ago, areas such as the Rio Ranchería watershed have suffered permanent damage. The savannas of this region are likely to remain unless fire is suppressed and soil restoration practices implemented.  相似文献   

15.
Tropical ecosystems are under increasing pressure from land‐use change and deforestation. Changes in tropical forest cover are expected to affect carbon and water cycling with important implications for climatic stability at global scales. A major roadblock for predicting how tropical deforestation affects climate is the lack of baseline conditions (i.e., prior to human disturbance) of forest–savanna dynamics. To address this limitation, we developed a long‐term analysis of forest and savanna distribution across the Amazon–Cerrado transition of central Brazil. We used soil organic carbon isotope ratios as a proxy for changes in woody vegetation cover over time in response to fluctuations in precipitation inferred from speleothem oxygen and strontium stable isotope records. Based on stable isotope signatures and radiocarbon activity of organic matter in soil profiles, we quantified the magnitude and direction of changes in forest and savanna ecosystem cover. Using changes in tree cover measured in 83 different locations for forests and savannas, we developed interpolation maps to assess the coherence of regional changes in vegetation. Our analysis reveals a broad pattern of woody vegetation expansion into savannas and densification within forests and savannas for at least the past ~1,600 years. The rates of vegetation change varied significantly among sampling locations possibly due to variation in local environmental factors that constrain primary productivity. The few instances in which tree cover declined (7.7% of all sampled profiles) were associated with savannas under dry conditions. Our results suggest a regional increase in moisture and expansion of woody vegetation prior to modern deforestation, which could help inform conservation and management efforts for climate change mitigation. We discuss the possible mechanisms driving forest expansion and densification of savannas directly (i.e., increasing precipitation) and indirectly (e.g., decreasing disturbance) and suggest future research directions that have the potential to improve climate and ecosystem models.  相似文献   

16.
Microclimate and habitat heterogeneity through the oil palm lifecycle   总被引:1,自引:0,他引:1  
The rapid expansion of oil palm cultivation and corresponding deforestation has invoked widespread concern for biodiversity in Southeast Asia and throughout the tropics. However, no study explicitly addresses how habitat characteristics change when (1) forest is converted to oil palm, or (2) through the dynamic 25–30-year oil palm lifecycle. These two questions are fundamental to understanding how biodiversity will be impacted by oil palm development.Our results from a chronosequence study on microclimate and vegetation structure in oil palm plantations surrounding the Pasoh Forest Reserve, Peninsular Malaysia, show dramatic habitat changes when forest is converted to oil palm. However, they also reveal substantial habitat heterogeneity throughout the plantation lifecycle. Oil palm plantations are created by clear-cutting forests and then terracing the land. This reduces the 25 m-tall forest canopy to bare ground with a harsh microclimate. Eight-year-old oil palm plantations had 4 m open-canopies; 22-year-old plantations had 13 m closed-canopies. Old plantations had significantly more buffered microclimates than young plantations. Understory vegetation was twice as tall in young plantations, but leaf litter depth and total epiphyte abundance were double in old plantations. Nonetheless, leaf litter coverage was patchy throughout the oil palm life cycle due to the stacking of all palm fronds. Overall, oil palm plantations were substantially hotter (+2.84 °C) and drier (+0.80 hPa vapor pressure deficit), than forests during diurnal hours. However, there were no nocturnal microclimate differences between forests and plantations. Finally, we describe how the variable retention of old palm trees during crop rotation can retain habitat features and maintain more stable microclimate conditions than clear-cutting senescent plantations. We discuss the implications of habitat changes for biodiversity and introduce three methods to utilize temporal habitat heterogeneity to enhance the quality of the oil palm landscape matrix.  相似文献   

17.
红皮云杉林(Picea koraiensis Forest Alliance)是以红皮云杉为群落共优势种的森林植被类型, 具有结构复杂及物种多样性高等特点。在遵从《中国植被志》研编规范的基础上, 提出了红皮云杉林新的分类系统, 包括5个群丛组8个群丛, 分别归属于常绿针叶林、落叶与常绿针叶混交林和针叶与阔叶混交林3个植被型。群丛组分类主要基于群落层片分化, 以及乔木层的共优势种和特征种的差异, 并以常绿针叶树层片重要值的66%为阈值划分常绿针叶林和针叶与阔叶混交林。在群丛分类中, 通过双向指示种分析筛选特征种, 综合考虑群落生境和群落演替阶段等因素确定分类方案。该分类方案是《中国植被志》研编规范的一个应用示例, 对植被分类工作的借鉴意义表现在4个方面。(1) 作为植被分类的重要凭证, 样方数据质量控制是植被分类工作的重要环节; 其中, 物种的准确鉴定对确保植被分类方案的合理性至关重要。(2) 对于乔木层物种组成丰富、优势种不明显的群落, 群落层片分化和特征种是植被类型划分的重要依据。(3) 以特定物种组合为共建种所组成的多个植被类型可归属为不同的植被型。(4) 森林采伐等人类活动可能对植被与环境的关系形成干扰。因此, 在植被分类中应考虑群落的干扰历史和演替阶段等因素。  相似文献   

18.
A density index of every diurnal raptor species (Falconiformes) was obtained on 101 400 ha sample plots distributed among eight natural habitats and five man-made habitats arranged along gradients of increasing forest degradation and fragmentation. The most significant structural parameter affecting species distribution was the tall canopy forest cover. Species richness, diversity and density all decreased with this mature forest cover index. Individual species and overall community densities decreased along the deforestation gradient but the species richness was partly maintained by species turnover. Six groups of species were identified according to their natural habitat preferences. Their distribution along the deforestation gradient was correlated with their natural habitat selection pattern. Thus the community composition of each vegetation or landscape type was predictable. Fifty-six percent of the regional assemblage of species had their optimal density in the primary forest. A third of them were interior forest species highly sensitive to forest disturbance and opening. The other two-thirds were upper canopy, gap or edge species more tolerant to forest fragmentation. The last twenty-one species were associated with various coastal habitats, from dense forest patches to mangrove and savanna. Again, one third of them were strictly restricted to their specialized habitats while the last two-thirds colonized human-altered habitats and progressively replaced primary forest species with increasing deforestation. The maintenance of large areas of every natural habitat was essential for the conservation of (1) the whole population of a third of the total raptor diversity and (2) optimal and presumably potential source populations of most other species surviving in human-modified habitats.  相似文献   

19.
Habitat loss and soil organic carbon (SOC) stock variations linked to land‐cover change were estimated over two decades in the most densely populated biodiversity hotspot in the world, in order to assess the possible influence of conservation practices on the protection of SOC. For a study area of 88 484 km2, 70% of which lie inside the Western Ghats Biodiversity Hotspot (WGBH), land‐cover maps for two dates (1977, 1999) were built from various data sources including remote sensing images and ecological forest maps. SOC stocks were calculated from climatic parameters, altitude, physiography, rock type, soil type and land‐cover, with a modelling approach used in predictive learning and based on Multiple Additive Regression Tree. The model was trained on 361 soil profiles data, and applied to estimate SOC stocks from predictor variables using a Geographical Information System (GIS). Comparison of 1977 and 1999 land‐cover maps showed 628 km2 of dense forests habitat loss (6%), corresponding to an annual deforestation rate of 0.44%. This was found consistent with other studies carried out in other parts of the WGBH, but not with FAO figures showing an increase in forest area. This could be explained by the different forest definitions used, based on ecological classification in the former, and on percentage tree cover in the latter. Unexpectedly, our results showed that despite ongoing deforestation, overall SOC stock was maintained (~0.43 Pg). But a closer examination of spatial differences showed that soil carbon losses in deforested areas were compensated by sequestration elsewhere, mainly in recent plantations and newly irrigated croplands. This suggests that more carbon sequestration in soils could be achieved in the future through appropriate wasteland management. It is also expected that increasing concerns about biodiversity loss will favour more conservation and reinforce the already prevailing protective measures, thus further maintaining C stocks.  相似文献   

20.
Abstract The response of insects to monoculture plantations has mainly proceeded at the expense of natural forest areas, and is an outstanding and important issue in ecology and conservation biology, with pollination services declined around the world. In this study, species richness and distribution of hoverfly and wild bee communities were investigated in a changing tropical landscape in southern Yunnan, south‐west China by Malaise traps periodically from 2008 to 2009. Species were recorded from the traditional land use types (natural forest, grassland, shrubland and rice field fallows), and from recently established rubber plantations of different ages. Hoverflies (total 53 species) were most common in young successional stages of vegetation, including rice field fallow and shrubland. Species richness was highest in rice field fallows and lowest in forests and showed a highly significant relationship with the number of forb species and ground vegetation cover. In contrast, the highest richness of wild bees (total 44 species) was recorded from the natural forest sites, which showed a discrete bee community composition compared to the remaining habitat types. There was no significant relationship between the bee species richness and the environmental variables, including the numbers of different plant life forms, coverage of canopy and ground vegetation, successional age of vegetation and land use type. At the landscape scale, open land use systems, including young rubber plantations, are assumed to increase the species richness of hoverflies; however, this might decrease wild bee diversity. The present land use change by rubber cultivation can be expected to have negative impacts on the native wild bee communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号