首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tropical peatlands cover over 25 Mha in Southeast Asia and are estimated to contain around 70 Gt of carbon. Peat swamp forest ecosystems are an important part of the region's natural resources supporting unique flora and fauna endemic to Southeast Asia. Over recent years, industrial plantation development on peatland, especially for oil palm cultivation, has created intense debate due to its potentially adverse social and environmental effects. The lack of objective up‐to‐date information on the extent of industrial plantations has complicated quantification of their regional and global environmental consequences, both in terms of loss of forest and biodiversity as well as increases in carbon emissions. Based on visual interpretation of high‐resolution (30 m) satellite images, we find that industrial plantations covered over 3.1 Mha (20%) of the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2010, surpassing the area of Belgium and causing an annual carbon emission from peat decomposition of 230–310 Mt CO2e. The majority (62%) of the plantations were located on the island of Sumatra, and over two‐thirds (69%) of all industrial plantations were developed for oil palm cultivation, with the remainder mostly being Acacia plantations for paper pulp production. Historical analysis shows strong acceleration of plantation development in recent years: 70% of all industrial plantations have been established since 2000 and only 4% of the current plantation area existed in 1990. ‘Business‐as‐usual’ projections of future conversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. This would increase the annual carbon emission to somewhere between 380 and 920 Mt CO2e by 2020 depending on water management practices and the extent of plantations.  相似文献   

2.
Borneo has experienced heavy deforestation and forest degradation during the past two decades. In this study the Moderate Resolution Imaging Spectroradiometer was used to monitor land cover change in Borneo between 2002 and 2005 in order to assess the current extent of the forest cover, the deforestation rate and the role of fire. Using Landsat and ground observation for validation it was possible to discriminate 11 land cover classes. In 2002 57% of the land surface of Borneo was covered with forest of which 74% was dipterocarp and more than 23% peat swamp forest. The average deforestation rate between 2002 and 2005 was 1.7% yr− 1. The carbon-rich ecosystem of peat swamp forests showed a deforestation rate of 2.2%. Almost 98% of all deforestation occurred within a range of 5 km to the forest edge. Fire is highly correlated with land cover changes. Most fires were detected in degraded forests. Ninety-eight per cent of all forest fires were detected in the 5 km buffer zone, underlining that fire is the major driver for forest degradation and deforestation.  相似文献   

3.
The biodiversity inhabiting tropical peat swamp forests in Southeast Asia is currently threatened by commercial logging and agricultural expansion. The occurrence of mammals in such forests is often poorly known and the factors influencing their occurrence in these ecosystems have rarely been quantified. We aim to determine the key habitat and landscape drivers of mammal species richness in fragmented peat swamp reserves. We conducted camera trap surveys in the North Selangor Peat Swamp Forest (NSPSF), the last remaining area of peat swamp forest on the west coast of Peninsular Malaysia. We also measured vegetation structure and landscape metrics to investigate the relationship between these factors and mammal richness. We recorded a total of 16 mammal species from 45 sampling sites using camera traps located in peat swamp forest reserves. Mammal species richness increased with the abundance of large trees and distance away from roads. Species richness decreased significantly with canopy cover and height, the abundance of fallen trees, the abundance of forest palms and saplings, distance away from rivers, and a measure of landscape compositional heterogeneity. Our findings underscore the high conservation value of logged peat swamp forests and the urgent need to halt further deforestation. We recommend: (1) protecting riparian habitat; (2) avoiding further forest conversion particularly areas supporting large trees into oil palm plantations; and (3) limiting road development within and around the NSPSF.  相似文献   

4.
Tropical peat swamp forests (PSFs) are globally important carbon stores under threat. In Southeast Asia, 35% of peatlands had been drained and converted to plantations by 2010, and much of the remaining forest had been logged, contributing significantly to global carbon emissions. Yet, tropical forests have the capacity to regain biomass quickly and forests on drained peatlands may grow faster in response to soil aeration, so the net effect of humans on forest biomass remains poorly understood. In this study, two lidar surveys (made in 2011 and 2014) are compared to map forest biomass dynamics across 96 km2 of PSF in Kalimantan, Indonesia. The peatland is now legally protected for conservation, but large expanses were logged under concessions until 1998 and illegal logging continues in accessible portions. It was hypothesized that historically logged areas would be recovering biomass while recently logged areas would be losing biomass. We found that historically logged forests were recovering biomass near old canals and railways used by the concessions. Lidar detected substantial illegal logging activity—579 km of logging canals were located beneath the canopy. Some patches close to these canals have been logged in the 2011–2104 period (i.e. substantial biomass loss) but, on aggregate, these illegally logged regions were also recovering. Unexpectedly, rapid growth was also observed in intact forest that had not been logged and was over a kilometre from the nearest known canal, perhaps in response to greater aeration of surface peat. Comparing these results with flux measurements taken at other nearby sites, we find that carbon sequestration in above‐ground biomass may have offset roughly half the carbon efflux from peat oxidation. This study demonstrates the power of repeat lidar survey to map fine‐scale forest dynamics in remote areas, revealing previously unrecognized impacts of anthropogenic global change.  相似文献   

5.
Tropical peatlands cover an estimated 440 000 km2 (~10% of global peatland area) and are significant in the global carbon cycle by storing about 40–90 Gt C in peat. Over the past several decades, tropical peatlands have experienced high rates of deforestation and conversion, which is often associated with lowering the water table and peat burning, releasing large amounts of carbon stored in peat to the atmosphere. We present the first model of long‐term carbon accumulation in tropical peatlands by modifying the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical HPM (HPMTrop) is a one‐dimensional, nonlinear, dynamic model with a monthly time step that simulates peat mass remaining in annual peat cohorts over millennia as a balance between monthly vegetation inputs (litter) and monthly decomposition. Key model parameters were based on published data on vegetation characteristics, including net primary production partitioned into leaves, wood, and roots; and initial litter decomposition rates. HPMTrop outputs are generally consistent with field observations from Indonesia. Simulated long‐term carbon accumulation rates for 11 000‐year‐old inland, and 5 000‐year‐old coastal peatlands were about 0.3 and 0.59 Mg C ha?1 yr?1, and the resulting peat carbon stocks at the end of the 11 000‐year and 5 000‐year simulations were 3300 and 2900 Mg C ha?1, respectively. The simulated carbon loss caused by coastal peat swamp forest conversion into oil palm plantation with periodic burning was 1400 Mg C ha?1 over 100 years, which is equivalent to ~2900 years of C accumulation in a hectare of coastal peatlands.  相似文献   

6.
Terrestrial ecosystems play an important role in the global carbon (C)cycle. Tropical forests in Southeast Asia are constantly changing as a result of harvesting and conversion to other land cover. As a result of these changes, research on C budgets of forest ecosystems has intensified in the region over thelast few years. This paper reviews and synthesizes the available information. Natural forests in SE Asia typically contain a high C density (up to 500 Mg/ha). Logging activities are responsible for at least 50% decline in forest C density.Complete deforestation (conversion from forest to grassland or annual crops) results in C density of less than 40 Mg/ha. Conversion to tree plantations and other woody perennial crops also reduces C density to less than 50% of the originalC forest stocks. While much information has been generated recently, there are still large gaps of information on C budgets of tropical forests and its conversion to other land uses in SE Asia. There is therefore a need to intensify research in this area.  相似文献   

7.
Terrestrial ecosystems play an important role in the global carbon (C) cycle. Tropicalforests in Southeast Asia are constantly changing as a result of harvesting and conversion to otherland cover. As a result of these changes, research on C budgets of forest ecosystems has intensi-fied in the region over the last few years. This paper reviews and synthesizes the available infor-mation. Natural forests in SE Asia typically contain a high C density (up to 500 Mg/ha). Logging activities are responsible for at least 50% decline in forest C density. Complete deforestation (conversion from forest to grassland or annual crops) results in C density of less than 40 Mg/ha. Conversion to tree plantations and other woody perennial crops also reduces C density to lessthan 50% of the original C forest stocks. While much information has been generated recently, there are still large gaps of information on C budgets of tropical forests and its conversion to otherland uses in SE Asia. There is therefore a need to intensify research in this area.  相似文献   

8.
Tropical peatlands have accumulated huge soil carbon over millennia. However, the carbon pool is presently disturbed on a large scale by land development and management, and consequently has become vulnerable. Peat degradation occurs most rapidly and massively in Indonesia, because of fires, drainage, and deforestation of swamp forests coexisting with tropical peat. Peat burning releases carbon dioxide (CO2) intensively but occasionally, whereas drainage increases CO2 emission steadily through the acceleration of aerobic peat decomposition. Therefore, tropical peatlands present the threat of switching from a carbon sink to a carbon source to the atmosphere. However, the ecosystem‐scale carbon exchange is still not known in tropical peatlands. A long‐term field experiment in Central Kalimantan, Indonesia showed that tropical peat ecosystems, including a relatively intact peat swamp forest with little drainage (UF), a drained swamp forest (DF), and a drained burnt swamp forest (DB), functioned as net carbon sources. Mean annual net ecosystem CO2 exchange (NEE) (± a standard deviation) for 4 years from July 2004 to July 2008 was 174 ± 203, 328 ± 204 and 499 ± 72 gC m?2 yr?1, respectively, for the UF, DF, and DB sites. The carbon emissions increased according to disturbance degrees. We found that the carbon balance of each ecosystem was chiefly controlled by groundwater level (GWL). The NEE showed a linear relationship with GWL on an annual basis. The relationships suggest that annual CO2 emissions increase by 79–238 gC m?2 every 0.1 m of GWL lowering probably because of the enhancement of oxidative peat decomposition. In addition, CO2 uptake by vegetation photosynthesis was reduced by shading due to dense smoke from peat fires ignited accidentally or for agricultural practices. Our results may indicate that tropical peatland ecosystems are no longer a carbon sink under the pressure of human activities.  相似文献   

9.
We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan‐tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr?1 in the 1990s and 7.6 million ha yr?1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr?1 (range: 646–1238) and 880 MtC yr?1 (range: 602–1237) respectively, with humid regions contributing two‐thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr?1 (range: 61–168) and 97 MtC yr?1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.  相似文献   

10.
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large‐scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human‐modified landscapes.  相似文献   

11.
Biomass burning is an integral part of the Earth system, influencing and being influenced by global climate conditions, vegetation cover and human activity. Fire has long been associated with certain vegetation types and land uses in Southeast Asia, but has increasingly affected forests in Indonesia over the last 50 years or so, and peat swamp forests in particular during the last two to three decades. The role of humans, as igniters of fires and as contributors to the conditions that enable fires once ignited to spread widely, is discussed. Other factors, notably the involvement of anomalous climate conditions linked to variability in the Indian and Pacific oceans, are also considered. Global warming and changes in landuse could result in biomass burning becoming more frequent in the future, threatening biodiversity and human health and leading to positive feedbacks with climate change. Deliberate action is required to break a developing disequilibrium within the Earth system: incentives currently being considered under the UN Framework Convention on Climate Change aimed at curbing climate change-causing emissions from deforestation and forest degradation could help mitigate biomass burning, while the effective management of biochar, a stable form of carbon produced from the incomplete combustion of organic matter, by farmers in Southeast Asia, and in other regions where biomass burning is common, could help in carbon sequestration. The paper concludes by stressing that in order to be effective any action needs to recognise the full range of environmental and human factors underpinning biomass burning.  相似文献   

12.
Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental agreements and of international aid, trade and development partnerships. Methodologically, the use of high-resolution remote sensing in representative samples has been shown to be cost-effective. Close collaboration between tropical institutions and inter-governmental organizations proved to be a fruitful arrangement in the different projects. To properly assist decision-making, monitoring and assessments should primarily be addressed at the national level, which also corresponds to the ratification level of the multilateral environmental agreements. The Forest Resources Assessment 2000 deforestation statistics from countries are consistent with the satellite-based estimates in Asia and America, but are significantly different in Africa, highlighting the particular need for long-term capacity-building activities in this continent.  相似文献   

13.
Studies of restoration ecology are well established for northern peatlands, but at an early stage for tropical peatlands. Extensive peatland areas in Southeast Asia have been degraded through deforestation, drainage and fire, leading to on- and off-site environmental and socio-economic impacts of local to global significance. To address these problems, landscape-scale restoration measures are urgently required. This paper reviews and illustrates, using information from on-going trials in Kalimantan, Indonesia, the current state of knowledge pertaining to (i) land-cover dynamics of degraded peatlands, (ii) vegetation rehabilitation, (iii) restoration of hydrology, (iv) rehabilitation of carbon sequestration and storage, and (v) promotion of sustainable livelihoods for local communities. For a 4500 km2 study site in Central Kalimantan, Indonesia, we show a 78% reduction in forest cover between 1973 and 2003 and demonstrate that fire, exacerbated by drainage, is the principal driver of land-use change. Progressive vegetation succession follows infrequent, low-intensity fires, but repeated and high-intensity fires result in retrogressive succession towards non-forest communities. Re-wetting the peat is an important key to vegetation restoration and protection of remaining peat carbon stocks. The effectiveness of hydrological restoration is discussed and likely impacts on greenhouse gas emissions evaluated. Initial results indicate that raised water levels have limited short-term impact on reducing CO2 emissions, but could be critical in reducing fire risk. We conclude that successful restoration of degraded peatlands must be grounded in scientific knowledge, relevant to socio-economic circumstances, and should not proceed without the consent and co-operation of local communities.  相似文献   

14.
Shorea balangeran is an important component of peat swamp forests in Southeast Asia and is an important source of timber. However, S. balangeran has been decreasing in number due to overexploitation. The objective of this study was to investigate the effect of inoculation of native ectomycorrhizal (ECM) fungi on growth of S. balangeran in degraded peat swamp forest. Spores of Boletus sp., Scleroderma sp., and Strobilomyces sp. were collected from natural peat swamp forest in Indonesia. Seedlings of S. balangeran were inoculated with or without (control) spores and grown in sterilized peat soil under nursery conditions for 6 months. Then, the seedlings were transplanted into a degraded peat swamp forest and grown for 40 months. ECM colonization was 59–67% under nursery conditions and increased shoot height and weight. Shoot height, stem diameter, and survival rates were higher in inoculated seedlings than in control 40 months after transplantation. The results suggest that inoculation of native ECM fungi onto native tree species is useful for reforestation of degraded peat swamp forests.  相似文献   

15.
In Southeast Asia, a huge amount of peat has accumulated under swamp forests over millennia. Fires have been widely used for land clearing after timber extraction, thus land conversion and land management with logging and drainage are strongly associated with fire activity. During recent El Niño years, tropical peatlands have been severely fire‐affected and peatland fires enlarged. To investigate the impact of peat fires on the regional and global carbon balances, it is crucial to assess not only direct carbon emissions through peat combustion but also oxidative peat decomposition after fires. However, there is little information on the carbon dynamics of tropical peat damaged by fires. Therefore, we continuously measured soil CO2 efflux [peat respiration (RP)] through oxidative peat decomposition using six automated chambers on a burnt peat area, from which about 0.7 m of the upper peat had been lost during two fires, in Central Kalimantan, Indonesia. The RP showed a clear seasonal variation with higher values in the dry season. The RP increased logarithmically as groundwater level (GWL) lowered. Temperature sensitivity or Q10 of RP decreased as GWL lowered, mainly because the vertical distribution of RP would shift downward with the expansion of an unsaturated soil zone. Although soil temperature at the burnt open area was higher than that in a near peat swamp forest, model simulation suggests that the effect of temperature rise on RP is small. Annual gap‐filled RP was 382 ± 82 (the mean ± 1 SD of six chambers) and 362 ± 74 gC m?2 yr?1 during 2004–2005 and during 2005–2006 years, respectively. Simulated RP showed a significant negative relationship with GWL on an annual basis, which suggests that every GWL lowering by 0.1 m causes additional RP of 89 gC m?2 yr?1. The RP accounted for 21–24% of ecosystem respiration on an annual basis.  相似文献   

16.
Tropical dry forests are more threatened, less protected and especially susceptible to deforestation. However, most deforestation research focuses on tropical rain forests. We analyzed spatial and temporal changes in land cover from 1972 through 2005 at Chatthin Wildlife Sanctuary (CWS), a tropical dry forest in Myanmar (Burma). CWS is one of the largest protected patches of tropical dry forest in Southeast Asia and supports over half the remaining wild population of the endangered Eld’s deer. Between 1973 and 2005, 62% of forest was lost at an annual rate of 1.86% in the area, while forest loss inside CWS was only 16% (0.45% annually). Based on trends found during our study period, dry forests outside CWS would not persist beyond 2019, while forests inside CWS would persist for at least another 100 years. Analysis of temporal deforestation patterns indicates the highest rate of loss occurred between 1992 and 2001. Conversion to agriculture, shifting agriculture, and flooding from a hydro-electric development were the main deforestation drivers. Fragmentation was also severe, halving the area of suitable Eld’s deer habitat between 1973 and 2001, and increasing its isolation. CWS protection efforts were effective in reducing deforestation rates, although deforestation effects extended up to 2 km into the sanctuary. Establishing new protected areas for dry forests and finding ways to mitigate human impacts on existing forests are both needed to protect remaining dry forests and the species they support.  相似文献   

17.
朱华 《广西植物》2019,39(1):62-70
大陆东南亚(中南半岛)的植被研究情况鲜为人知,至今仍无系统研究资料。该文依据数次对该地区的野外考察和资料收集,介绍了东南亚植被的研究情况和文献资料以及对该地区主要森林植被的分类和各主要植被类型的特征。大陆东南亚地区在植被分类上包括七个主要的陆生及湿地的森林植被类型:针叶林、针阔混交林、热带山地常绿阔叶林、热带雨林、热带季节性湿润林、热带季风林(季雨林)、干旱刺灌丛/萨王纳植被。其中,针叶林植被型包括温性针叶林和热性针叶林二个植被亚型;针阔混交林包括温性针阔混交林和暖温性针阔混交林二个亚型;热带雨林植被型包括热带低地常绿雨林、热带季节性雨林(热带低地半常绿雨林)、热带山地雨林及泥炭沼泽森林四个植被亚型。该文还对大陆东南亚地区植被研究历史、植被分类系统、类型特征及植物区系组成进行了讨论。  相似文献   

18.
Evaluating the annual sources and sinks of carbon from land-use change helps con-strain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses ofland-use change in China and tropical Asia. The original forest areas are estimated to have cov-ered 546×10~6 ha in tropical Asia and 425×10~6 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forestcover (29% of the initial forest area). Tropical Asia is estimated to have lost 26% of its initial forestcover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions re-flect the different histories over the last 150 years, with China's emissions peaking in thelate 1950s (at 0.2-0.5 Pg C·a~(-1)) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C·a~(-1)). Despite the fact that most deforestation has been for new agricultural land, the majority ofthe lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands.Unlike croplands, the origins of these other lands are poorly documented, and thus add consider-able uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of car-bon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

19.
Southeast Asia was almost entirely covered by rainforest 8,000 years ago. Today, this region is experiencing the highest relative rates of deforestation and forest degradation in the humid tropics. Every year, millions of hectares of tropical forests are destroyed and degraded. Given the rapid rate of deforestation and the high concentration of endemic species in the region, Southeast Asia could lose 13–42% of local populations by the turn of the next century, at least 50% of which could represent global species extinction. In this Special Issue, we discuss the uniqueness of Southeast Asian biodiversity, drivers of forest destruction, threats to the region’s unique ecosystems and taxa, and key conservation challenges to provide a broad-based review of the science, management and policy issues concerning biodiversity conservation. Overall, we highlight the need for an interdisciplinary and multi-pronged strategy requiring all major stakeholders to work together to achieve the ultimate goal of reconciling biodiversity conservation and human well-being in the region.  相似文献   

20.
Evaluating the annual sources and sinks of carbon from land-use changehelps constrain other terms in the global carbon cycle and may help countries choose how to comply with commitments for reduced emissions. This paper presents the results of recent analyses of land-use change in China and tropical Asia. The original forest areas are estimated to have covered 546×106 ha in tropical Asia and 425×106 ha in China. By 1850, 44% of China's forests had been cleared, and another 27% was lost between 1850 and 1980, leaving China with 13% forest cover (29% of the initial forest area). Tropical Asia is estimated to have lost 26%of its initial forest cover before 1850 and another 33% after 1850. The annual emissions of carbon from the two regions reflect the different histories over the last 150 years, with China's emissions peaking in the late 1950s (at 0.2-0.5 Pg C@a-1) and tropical Asia's emissions peaking in 1990s (at 1.0 Pg C@a-1). Despite the fact that most deforestation has been for new agricultural land, the majority of the lands cleared from forests in China are no longer croplands, but fallow or degraded shrublands. Unlike croplands, the origins of these other lands are poorly documented, and thus add considerable uncertainty to estimates of flux before the 1980s. Nevertheless, carbon emissions from China seem to have decreased since the 1960s to nearly zero at present. In contrast, emissions of carbon from tropical Asia were higher in the 1990s than that at any time in the past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号