首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ambient outdoor concentrations and size distributions of airborne microbial particles were measured approximately weekly for 2 years in a Washington, D.C., suburban area. The study objective was to characterize microbial air quality in the vicinity of a proposed sewage sludge composting facility. During the study, 379 samples were taken at 17 stations, using Andersen microbial samplers. Concentration ranges (in viable particles per cubic meter) were as follows: airborne mesophilic fungi, 0 to 7,220 with a geometric mean of 273; thermophilic fungi, 0 to 193 with a median of 2.1; Aspergillus fumigatus, 0 to 71 with a median of 1.0; aerobic bacteria, 4.2 to 1,640 with a geometric mean of 79; and fecal streptococci, 0 to 5.7 with a median of 0. No fecal coliforms were recovered. The potentially respirable fraction (less than 8 microns) averaged 34% for total bacteria, 56% for mesophilic fungi, 91% for thermophilic fungi, and 95% for A. fumigatus. The specific sampling location was not a major factor affecting microbial particle concentrations or size distributions. Conversely, the time of year was an important determinant of viable particle concentrations for all groups of microorganisms studied. The highest concentrations were observed in summer and fall, with significantly lower levels detected in winter. In general, the microbial data did not correlate with other variables, including weather conditions, measured in this study.  相似文献   

2.
Microbial prevalence in domestic humidifiers.   总被引:2,自引:1,他引:1       下载免费PDF全文
The prevalence of viable thermophilic bacteria and actinomycetes and mesophilic fungi was examined in 145 samples from 110 domestic humidifiers. A total of 72 and 43% of furnace and console humidifier samples, respectively, contained viable thermophilic bacteria, whereas 60 and 72% of these samples produced mesophilic fungal growth. Thermophilic actinomycetes were recovered from seven humidifier samples. Efforts to detect thermophilic actinomycete antigens in 15 humidifier fluid samples were not successful. Antifoulants added to humidifier fluid reservoirs had no apparent effect on microbial frequency. Airborne microbial recoveries did not reflect patterns of humidifier contamination with respect to either kinds or numbers of microorganisms in 20 homes in which volumetric air samples were obtained during humidifier operation.  相似文献   

3.
中高温污泥厌氧消化系统中微生物群落比较   总被引:9,自引:0,他引:9  
【目的】结合中温与高温消化两者优势的两相厌氧消化工艺可能是推进污泥厌氧消化发展的重要方向,因此,探究和比较中温和高温污泥厌氧消化系统中微生物群落组成的异同具有重要意义。【方法】利用高通量测序技术检测中温和高温厌氧消化系统中细菌与古菌的16S r RNA基因序列信息和真菌的内转录间隔(ITS)序列信息,利用基因芯片(Geo Chip 5.0)检测病毒和病原菌致病基因的信息,以对比中温和高温条件下微生物群落在物种组成和功能基因层面上的异同。【结果】中温和高温条件下细菌和古菌在群落物种组成上存在显著差异,病毒和病原菌毒性基因也显著不同,而两种系统中真菌群落的物种组成相似且丰度相对较低。中温条件下产甲烷古菌和未分类微生物相对丰度较高,而高温条件下产酸及嗜热菌相对丰度较高,且高温消化后病毒和病原菌毒性基因相对丰度下降。微生物群落结构与COD、TS和VS有着显著相关性。【结论】微生物群落组成和功能基因在中高温的污泥厌氧消化系统中显著不同,从而解释了两个系统功能的差异。微生物群落的形成与进水参数相关,说明微生物对进水条件敏感。  相似文献   

4.
The biological loading of viable, cultivable airborne microbes (heterotrophic bacteria, actinobacteria and fungi) in 6 size fractions as well as the three different fractions of respirable particulate matter (PM1, PM2.5 and PM10) and their relationship to meteorological conditions were studied in the ambient air due to health-related interests. An Andersen six stage viable particle impactor and a MAS 100 sampler were used for microbial measurements. 82 measurements were performed at three different periods (41 days) at a suburban, residential site in the city of Chania (Crete, Greece) during the period from April 2008 to June 2009. The concentrations of the viable, cultivable airborne microbes (bioaerosols) as well as of the PM1, PM2.5 and PM10 were highly variable during the whole measurement period. Among the airborne microbes, fungi presented the most abundant taxonomic group in the ambient air. A characteristic profile of the mean size distribution of biological loading in different PM fractions was obtained for every measured microbial taxonomic group. Although, the highest concentrations of the airborne fungi and actinobacteria were determined at aerodynamic diameters between 2.1 and 3.3 μm, a nearly equal distribution of the mean concentrations of the airborne heterotrophic bacteria was observed in the six different size fractions. However, two small maxima were observed at the airborne heterotrophic bacteria distribution, one at the fraction with aerodynamic diameters between 1.1 and 2.1 μm, and at other at the coarse fraction with aerodynamic diameter larger than 7 μm. A considerable part of the airborne microbes Cycloheximide per mL of growth medium of bacteriwere resistant to drugs. Between 10 and 40 % of the viable, cultivable airborne microbes were resistant to low concentrations of drugs (5–10 μg of Streptomycin or a or fungi, respectively). Furthermore, multiple linear regression of the data showed that the variation in fungi concentrations depends on the variation in PM10 mass concentration, PM1 number concentration, relative humidity and solar radiation. Likewise, the concentration of heterotrophic bacteria was found proportional to the values of relative humidity and fungal concentration, whereas was negatively correlated to the solar radiation.  相似文献   

5.
The association between moisture-related microbial growth (mesophilic fungi and bacteria) within insulated exterior walls and microbial concentrations in the indoor air was studied. The studied apartment buildings with precast concrete external walls were situated in a subarctic zone. Actinomycetes in the insulation layer were found to have increased concentrations in the indoor air. The moisture content of the indoor air significantly affected all measurable airborne concentrations.  相似文献   

6.
The association between moisture-related microbial growth (mesophilic fungi and bacteria) within insulated exterior walls and microbial concentrations in the indoor air was studied. The studied apartment buildings with precast concrete external walls were situated in a subarctic zone. Actinomycetes in the insulation layer were found to have increased concentrations in the indoor air. The moisture content of the indoor air significantly affected all measurable airborne concentrations.  相似文献   

7.
A field study was performed to identify the size distribution characteristics of viable, cultivable airborne microorganisms (heterotrophic bacteria, fungi, and total coliforms) at a municipal wastewater treatment facility, and their association with inhalable particulate matter (PM1, PM2.5, and PM10), as well as hydrogen sulfide concentrations and ambient meteorological parameters. The highest concentrations of cultivable, airborne heterotrophic bacteria, total coliforms, mass and number concentration of particulate matter, as well as hydrogen sulfide were observed at the aerated grit removal chambers at the pretreatment stage (3 to 2030 times higher than the values of the background ambient air). In contrast, the mean concentrations of cultivable, airborne mesophilic fungi at the aerated grit chambers were 0.6 time lower than the background site, where fungi presented the most abundant taxonomic group in the ambient air. Although the highest concentrations of the airborne fungi were determined at aerodynamic diameters between 2.1 and 3.3 μm, a nearly equal distribution of the mean concentrations of the cultivable, airborne heterotrophic bacteria were observed in the six different size fractions at the primary settling tanks and in the ambient air. Interestingly, their size distribution profiles at the aerated grit chambers were different and showed a maximum aerodynamic diameter at the size range from 3.3 to 4.7 μm, similar to that of the cultivable, airborne total coliforms. In general, low positive or no significant linear relationships could be found between the cultivable airborne heterotrophic bacteria, total coliforms, or fungi at the two wastewater treatment stages and the ambient background microbial community.  相似文献   

8.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

9.
Numbers of airborne microorganisms, fungi, Gram-negative bacteria, thermophilic microorganisms, endotoxins and dust have been monitored in resource recovery plants and composting plants. The work is still in progress, so this paper decribes only preliminary results. Only low levels (< 15 ng m?3) of endotoxins were found at all locations. Levels of microorganisms, fungi, Gram-negative bacteria and dust changed with quality of waste, activity in the plant etc. Levels of airborne microorganisms, endotoxins and dust could be considerably decreased in resource recovery plants if only waste of good quality, e.g. presorted materials, is handled. For composting plants the highest levels of airborne microorganisms were found during aeration, especially by indoor composting where levels of 8.3 × 105 CFU of mesophilic microorganisms were found.  相似文献   

10.
In raw sludges and in mesophilically and thermophilically digested anaerobic sludges, large variations in numbers of viruses occurred over narrow ranges of numbers of fecal coliforms, total coliforms, and fecal streptococci, demonstrating that the bacteria were poor quantitative reflectors of the numbers of the viruses detected. Mesophilic and thermophilic digestion of anaerobic sludges destroyed all three indicator bacteria more rapidly than such digestion destroyed the viruses. The relative rates for the destruction of viruses, fecal coliforms, and fecal streptococci in the digested sludges were consistent over the 17-month study. Fecal coliforms were 7 to 8 times more sensitive than the viruses to mesophilic digestion and 9 to 10 times more sensitive to thermophilic digestion. Total coliforms were even more sensitive. The rates at which fecal streptococci were destroyed by mesophilic and thermophilic digestion of anaerobic sludges approached those at which the viruses were destroyed by those processes; this suggested that the rates at which fecal streptococci in sludges are destroyed by those processes may serve as useful indicators for the rates at which viruses in sludges are destroyed by those processes.  相似文献   

11.
Compost windrows for bioremediation of soil were built at a wood-preserving site contaminated with chlorophenols, polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). Sampling of airborne particles during the mixing of the compost windrows found concentrations of PCDDs and PCDFs in different particle sizes. The congener distribution of PCDDs and PCDFs in the collected air particle fractions was similar to that in the compost windrows, and the level of PCDDs and PCDFs was 1000-fold higher than the atmospheric background values reported previously. Viable particle-sizing samplers and several selective growth media were used to enumerate bacteria and fungi in the airborne particles. From the collected air samples, 40 bacteria were isolated and identified. Among the isolated bacteria, 80% were Gram-positive and spore-forming. Two of the identified airborne bacteria, Pseudomonas aeruginosa and Bacillus cereus, may cause human disease and are classified in biological agent hazard group 2. The amounts of airborne fungi, molds, and yeasts were 1000 to 2000 colony-forming units (CFUs) per m3. The number of actinomycetes was up to 6-fold, and the number of bacteria was 2- to 20-fold compared to background values. The overall level of airborne bacteria (200 to 3500 CFUs per m3) was low compared to the level of bacteria (105 to 108 CFUs per m3) found when composting municipal waste.  相似文献   

12.
The emission of the airborne bacteria and fungi from an indoor wastewater treatment station adopting an integrated oxidation ditch with a vertical circle was investigated. Microbial samples were collected by the six-stage viable Andersen cascade impactor, and the samples were collected in triplicate in each sampling site per season. Culture-based method was applied to determine the concentrations of the airborne bacteria and fungi, while the cloning/sequencing method was used to characterize the genetic structure and community diversity of airborne bacteria. The highest concentrations of airborne bacteria (4155 ± 550 CFU/m3) and fungi (883 ± 150 CFU/m3) were obtained in June (summer). The lowest concentration of bacteria (1458 ± 434 CFU/m3) was determined in January (winter), and the lowest concentration of fungi (169 ± 40 CFU/m3) was found in March (spring), respectively. The particle size distribution analysis showed that most culturable bacteria obtained in all the sampling sites were in the particle size range of 1.1–4.7 µm. Most culturable fungi had particle sizes in the range 1.1–3.3 µm. Microbial population analysis showed that Bacillus sp., Acinetobacter sp., and Lysinibacillus were the main groups obtained in S1. Enterobacter was the dominant group in sampling site S2. Both the concentrations and particle size distribution of the bioaerosols in the enclosed space presented a seasonal and site-related variation. Concentration and richness of microorganisms in bioaerosols in June were higher than in September and January. The particle size distribution varied between the sampling sites, and proportion of large particles was higher in S2 than in S1 because of the settlement of large particles. Pathogenic species, such as Acinetobacter lwoffii, Staphylococcus saprophyticus, and Enterobacter sp., were isolated from the bioaerosols, which could pose serious latent danger to sewage workers’ health.  相似文献   

13.
When microorganisms are used for pest control in vegetable production, the active organisms become part of the microbiota growers are exposed to. The aim of this study was to quantify vegetable growers' exposure to the bacterial strain Bacillus thuringiensis kurstaki strain HD1 (termed HD1) from the biocontrol agent Dipel®, and other airborne mesophilic bacteria. Personal (n=102) and stationary (n=43) measurements of exposure were performed in greenhouses and open fields. Air samples were analysed by plate counts, and total counts with a microscope. Isolates resembling HD1 were identified by PCR analysis. HD1-like bacteria were only detected in environments where Dipel® was used. In a greenhouse with Dipel® treated tomato plants, the growers' exposure to airborne HD1-like bacteria reached 5300 cfu/m3 and 1400 cfu/m3 during harvest and clearing of old plants, respectively. In untreated greenhouses, the highest concentration of total mesophilic bacteria, 1,100,000 cfu/m3, was detected in a cucumber greenhouse. The median concentrations of mesophilic bacteria in tomato greenhouses were significantly lower than the median concentrations in cucumber greenhouses. There was no significant difference in exposure to mesophilic bacteria in tomato greenhouses and in vegetable fields. We found that greenhouse workers, especially in cucumber production, were exposed to high concentrations of total bacteria. Thus, the already present airborne bacteria in greenhouses might have a greater influence on growers' health than applied biocontrol strains. However, further studies are needed to establish an occupational threshold limit for airborne bacteria and to secure a healthy working environment for vegetable growers.  相似文献   

14.
AIMS: To determine the microbial succession of the dominating taxa and functional groups of microorganisms and the total microbial activity during the composting of biowaste in a monitored process. METHODS AND RESULTS: Biowaste (vegetable, fruit and garden waste) was composted in a monitored composting bin system. During the process, taxonomic and functional subpopulations of microorganisms were enumerated, and dominating colonies were isolated and identified. All counts decreased during the thermophilic phase of the composting, but increased again when the temperature declined. Total microbial activity, measured with an enzyme activity assay, decreased during the thermophilic phase, increased substantially thereafter, and decreased again during maturation. Bacteria dominated during the thermophilic phase while fungi, streptomycetes and yeasts were below the detection limit. Different bacterial populations were found in the thermophilic and mesophilic phases. In fresh wastes and during the peak-heating phase, all bacterial isolates were bacilli. During the cooling and maturation phase the bacterial diversity increased, including also other Gram-positive and Gram-negative bacteria. Among the fungi, Aspergillus spp. and Mucor spp. were predominant after the thermophilic phase. CONCLUSIONS: The microbial abundance, composition and activity changed substantially during composting and compost maturity was correlated with high microbial diversity and low activity. SIGNIFICANCE AND IMPACT OF THE STUDY: A more complete overview of the whole composting process of biowaste, based on microbial counts, species diversity and functional groups and abiotic parameters is presented, and the potential of a simple enzyme assay to measure total microbial activity was demonstrated.  相似文献   

15.
Actinomycetes and Fungi in Surface Waters and in Potable Water   总被引:3,自引:3,他引:0       下载免费PDF全文
In Finnish lakes and rivers used as water supplies, mesophilic fungi and actinomycetes were common, whereas thermophilic fungi and actinomycetes were present only in low concentrations. Fungi and actinomycetes were more abundant in eutrophic and mesotrophic lakes than in oligotrophic lakes. River water contained more thermophilic actinomycetes and fungi and mesophilic actinomycetes than did lake water. Runoff from soil seemed to be an important factor contributing to the incidence of these microbes in water. Chemical coagulation removed actinomycetes and fungi efficiently, but sand filtration allowed their passage. Disinfection could not prevent actinomycetes and fungi from reaching the distribution system. During infiltration in the production of recharged groundwater, mesophilic actinomycetes could even multiply appreciably.  相似文献   

16.
Microbial characterization during composting of municipal solid waste   总被引:29,自引:0,他引:29  
This study investigates the prevailing physico-chemical conditions and microbial community; mesophilic bacteria, yeasts and filamentous fungi, bacterial spores, Salmonella and Shigella as well as faecal indicator bacteria: total coliforms, faecal coliforms and faecal Streptococci, present in a compost of municipal solid waste. Investigations were conducted in a semi-industrial pilot plant using a moderate aeration during the composting process. Our results showed that: (i) auto-sterilization induced by relatively high temperatures (60–55°C) caused a significant change in bacterial communities. For instance, Escherichia coli and faecal Streptococci populations decreased, respectively, from 2×107 to 3.1×103 and 107 to 1.5×103 cells/g waste dry weight (WDW); yeasts and filamentous fungi decreased from 4.5×106 to 2.6×103 cells/g WDW and mesophilic bacteria were reduced from 5.8×109 to 1.8×107 bacteria/g WDW. On the other hand, the number of bacterial spores increased at the beginning of the composting process, but after the third week their number decreased notably; (ii) Salmonella disappeared completely from compost by the 25th day as soon as the temperature reached 60°C; and (iii) the bacterial population increased gradually during the cooling phase. While Staphylococci seemed to be the dominant bacteria during the mesophilic phase and at the beginning of the thermophilic phase, bacilli predominated during the remainder of the composting cycle. The appearance of gram-negative rods (opportunistic pathogens) during the cooling phase may represent a serious risk for the sanitary quality of the finished product intended for agronomic reuse. Compost sonication for about 3 min induced the inactivation of delicate bacteria, in particular gram-negatives. By contrast, gram-positive bacteria, especially micrococcus, spores of bacilli, and fungal propagules survived, and reached high concentrations in the compost.  相似文献   

17.
Studies of airborn fungi were undertaken to evaluate exposure risks for laboratory animals and human handlers which might lead to allergic or invasive disease. Although sporadically high fungus levels were encountered, counts of viable fungus particles were in general low. Recoveries on malt extract agar significantly exceeded those on Sabouraud dextrose agar. The taxa most frequently and abundantly recovered were Penicillium species. Data analyses suggest that 'clean' bedding material may be the principal source of these spores, that cleaning temporarily increases spore levels, and that outdoor airborne fungi contributed little to the indoor air spora identified. Aspergillus fumigatus was infrequently encounted in our samples, and dermatophytes were not recovered.  相似文献   

18.
Quantitative Ecology of Psychrophilic Microorganisms   总被引:4,自引:3,他引:1       下载免费PDF全文
To obtain information on the importance of psychrophiles in nature, 95 samples of soil, water, mud, and various foods were quantitatively assayed for their content of psychrophilic bacteria and fungi and also for mesophilic and thermophilic bacteria and fungi. Thousands to millions of psychrophilic bacteria were present per gram of soil and represented 0.5 to 86% of the bacterial population. Also, about 25% of the fungi in uncultivated soil were psychrophilic. In stream and river water, psychrophilic bacteria constituted 16 to 47% of the bacterial population; in lake water, 41 to 76%; and in lake mud, 11 to 33%. Large numbers of psychrophilic bacteria were present in dairy products, meats, and other foods, and accounted for 35 to 93% of the bacterial population of meats. In contrast, thermophilic bacteria usually comprised 1% or less of the bacterial population in all of the materials examined. The data indicate that psychrophiles are both ubiquitous and numerous in nature, and probably play important roles in the cycles of matter.  相似文献   

19.
AIMS: To isolate aerobic mesophilic bacilli and thermophilic bacteria from different paper mill samples and to evaluate their potential harmfulness. METHODS AND RESULTS: A total of 109 mesophilic and 68 thermophilic isolates were purified and characterized by automated ribotyping and partial 16S rDNA sequencing. The mesophilic isolates belonged to the genera Bacillus (13 taxa), Brevibacillus (three taxa) and Paenibacillus (five taxa). The thermophilic bacteria represented seven taxa of Bacillus, Geobacillus or Paenibacillus, four of proteobacteria and one of actinobacteria. The most frequently occurring bacteria were Bacillus cereus, B. licheniformis, Pseudoxanthomonas taiwanensis and bacteria closely related to Paenibacillus stellifer, P. turicensis or Leptothrix sp. One mill was contaminated throughout with bacteria of a novel mesophilic genus most closely related to Brevibacillus centrosporus and another with bacteria of a novel thermophilic genus most closely related to Hydrogenophilus thermoluteolus. One B. cereus isolate producing haemolytic diarrhoeal enterotoxin was detected and all the tested B. licheniformis isolates produced a metabolite toxic to boar sperm cells. CONCLUSIONS: The bacilli and thermophilic bacteria isolated represent species which should not present occupational hazards in paper mill environments. The most harmful bacterium detected was B. licheniformis and potentially also B. cereus. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of the microbial diversity in a paper mill provides a rational basis for development of an effective controlling programme. A database constructed from the fingerprints generated using automated ribotyping helps to identify and trace the contamination routes of bacteria occurring in paper mills.  相似文献   

20.
Mesophilic fungi isolated from organic fertilizer compost samples accounted for 70.94% of the total fungal count, while thermophilic and thermotolerant fungi constituted 29.05% of that count. Eight mesophilic fungal species, namelyAspergillus niger, Monilia sitophila, Paecilomyces divaricata, Penicillium chrysogenum, P. fellutanum, Scopulariopsis brevicaulis, S. brumptii andZygorhynchus japonicus; two thermophilic fungiHumicola grisea andOidiodendron flavum and three thermotolerant speciesAspergillus fumigatus, Thermomyces lanuginosus andZygorhynchus vuilleminii were isolated during the study. Most of the tested fungi showed a proteolytic activity and liquified gelatin in the test tube method and in cup plates. The thermophilic fungusO. flavum was the most potent proteolytic fungus. The comparative fibrinolytic assay revealed the following sequence in the ability of the tested fungi to hydrolyse fibrin:O. fiavum>S. brevicaulis>H. grisea>A. fumigatus>T. lanuginosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号