首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K N Dudkin  I V Chueva 《Biofizika》1983,28(2):320-325
Sensitivity profiles of receptive fields (RF) of the cat's visual cortex along the width and length of the field were determined. They served as criteria for determining structural differences of the earlier discovered types of spatial-frequency filters. It has been shown that RF with spatial-frequency selectivity in a narrow range of orientations close to the preferable one, have the "one-dimensional" sensitivity profiles in the same range. For RF showing spatial-frequency selectivity along the RF length and width two-dimensional sensitivity profiles along these RF dimensions were revealed. A group of fields was found whose pattern of sensitivity profiles depended on the geometrical properties of images which stipulated the functional changes o RF filtering properties. Possible role of different types of spatial-frequency filters in image processing is discussed.  相似文献   

2.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

3.
The primary visual cortex is organized into clusters of cells having similar receptive fields (RFs). A purely feedforward model has been shown to produce realistic simple cell receptive fields. The modeled cells capture a wide range of receptive field properties of orientation selective cortical cells. We have analyzed the responses of 78 nearby cell pairs to study which RF properties are clustered. Orientation preference shows strongest clustering. Orientation tuning width (hwhh) and tuning height (spikes/sec) at the preferred orientation are not as tightly clustered. Spatial frequency is also not as tightly clustered and RF phase has the least clustering. Clustering property of orientation preference, orientation tuning height and width depend on the location of cells in the orientation map. No such location dependence is observed for spatial frequency and RF phase. Our results agree well with experimental data.  相似文献   

4.
We review the evidence of long-range contextual modulation in V1. Populations of neurons in V1 are activated by a wide variety of stimuli outside of their classical receptive fields (RF), well beyond their surround region. These effects generally involve extra-RF features with an orientation component. The population mapping of orientation preferences to the upper layers of V1 is well understood, as far as the classical RF properties are concerned, and involves organization into pinwheel-like structures. We introduce a novel hypothesis regarding the organization of V1’s contextual response. We show that RF and extra-RF orientation preferences are mapped in related ways. Orientation pinwheels are the foci of both types of features. The mapping of contextual features onto the orientation pinwheel has a form that recapitulates the organization of the visual field: an iso-orientation patch within the pinwheel also responds to extra-RF stimuli of the same orientation. We hypothesize that the same form of mapping applies to other stimulus properties that are mapped out in V1, such as colour and contrast selectivity. A specific consequence is that fovea-like properties will be mapped in a systematic way to orientation pinwheels. We review the evidence that cytochrome oxidase blobs comprise the foci of this contextual remapping for colour and low contrasts. Neurodynamics and motion in the visual field are argued to play an important role in the shaping and maintenance of this type of mapping in V1.  相似文献   

5.
Orientation selectivity of 24 neurons in area 17 of the visual cortex at different intensities of test bars of light, flashing against a constant light background in the center of the receptive field, was investigated in acute experiments on immobilized cats. Five neurons were invariant in orientation tuning to stimulus intensity (contrast): Although the magnitude of the response and acuteness of orientation selectivity were modified, preferential orientation was unchanged. More than half of the cells studied (13) were classed as noninvariant, for their preferential orientation was significantly shifted by 22–90° with a change in contrast. Small shifts of the peak of orientation selectivity, not statistically significant, were observed for the other neurons. Invariant neurons, unlike noninvariant, were characterized by preferential horizontal and vertical orientation, a lower frequency of spontaneous and evoked discharges, and the more frequent presence of receptive fields of simple type. The mechanisms of the change of orientation selectivity during contrast variation and also the different use of the two types of cells in orientation detection operations are discussed.  相似文献   

6.
From the intracellularly recorded responses to small, rapidly flashed spots, we have quantitatively mapped the receptive fields of simple cells in the cat visual cortex. We then applied these maps to a feedforward model of orientation selectivity. Both the preferred orientation and the width of orientation tuning of the responses to oriented stimuli were well predicted by the model. Where tested, the tuning curve was well predicted at different spatial frequencies. The model was also successful in predicting certain features of the spatial frequency selectivity of the cells. It did not successfully predict the amplitude of the responses to drifting gratings. Our results show that the spatial organization of the receptive field can account for a large fraction of the orientation selectivity of simple cells.  相似文献   

7.
A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression.  相似文献   

8.
In part I of this article a correlation based model for the developmental process of spatiotemporal receptive fields has been introduced. In this model the development is described as an activity-dependent competition between four types of input from the lateral geniculate nucleus onto a cortical cell, viz. non-lagged ON and OFF and lagged ON and OFF inputs. In the present paper simulation results and a first analysis are presented for this model. We study the developmental process both before and after eye-opening and compare the results with experimental data from reverse correlation measurements. The outcome of the developmental process is determined mainly by the spatial and the temporal correlations between the different inputs. In particular, if the mean correlation between non-lagged and lagged inputs is weak, receptive fields with a widely varying degree of direction selectivity emerge. However, spatiotemporal receptive fields may show rotation of their preferred orientation as a function of response delay. Even if the mean correlation between two types of temporal input is not weak, direction-selective receptive fields may emerge because of an intracortical interaction between different cortical maps. In an environment of moving lines or gratings, direction-selective receptive fields develop only if the distribution of the directions of motion presented during development shows some anisotropy. In this case, a continuous map of preferred direction is also shown to develop. Received: 18 June 1997 / Accepted: 16 September 1997  相似文献   

9.
The experiments examined the perceived spatial structure of plaid patterns, composed of two or three sinusoidal gratings of the same spatial frequency, superimposed at different orientations. Perceived structure corresponded well with the pattern of zero crossings in the output of a circular spatial filter applied to the image. This lends some support to Marr & Hildreth's (Proc. R. Soc. Lond. B 207, 187 (1980)) theory of edge detection as a model for human vision, but with a very different implementation. The perceived structure of two-component plaids was distorted by prior exposure to a masking or adapting grating, in a way that was perceptually equivalent to reducing the contrast of one of the plaid components. This was confirmed by finding that the plaid distortion could be nulled by increasing the contrast of the masked or adapted component. A corresponding reduction of perceived contrast for single gratings was observed after adaptation and in some masking conditions. I propose the outlines of a model for edge finding in human vision. The plaid components are processed through cortical, orientation-selective filters that are subject to attenuation by forward masking and adaptation. The outputs of these oriented filters are then linearly summed to emulate circular filtering, and zero crossings (zcs) in the combined output are used to determine edge locations. Masking or adapting to a grating attenuates some oriented filters more than others, and although this changes only the effective contrast of the components, it results in a geometric distortion at the zc level after different filters have been combined. The orientation of zcs may not correspond at all with the orientation of Fourier components, but they are correctly predicted by this two-stage model. The oriented filters are not 'orientation detectors', but are precursors to a more subtle stage that locates and represents spatial features.  相似文献   

10.
Time amplitude -- frequency characteristics of the I and II types of receptive fields (RF) of lateral geniculate and their dependence on the contrast and spatial parameters of the light stimulus were studied. It is shown that the frequency characteristics of the RF I type depends on the contrast and area of the light stimulus, the higher being the contrast at a small area the smaller are the low frequencies. However at a large area of the stimulus the inhibition of low frequencies is greater at a small contrast. The transmitting band of frequency characteristics of RF II type does not depend on the contrast at a small area of the stimulus, at a large area a fall of low frequencies takes place at high contrasts of the stimulus. Such different behaviour of the receptive fields is explained by the models, which take into account RF spatial characteristics.  相似文献   

11.
Visual discrimination of black bars by honeybees was studied in a Y-choice apparatus with fixed vertical patterns at constant range. The problem is to discover how bees remember different degrees of complexity of the orientation cue. Previous conclusions with parallel gratings and single bars disagree. With broad bars versus orthogonal bars, the bees learn the orientation cue if the bars are centred at the same place, but they learn the position cue in the vertical direction when the bars are at different places on the two targets. With several bars on each target, the bees learn their orientation and positions. As fixed patterns increase in complexity, the bees follow a simple rule, to look only at the range of places where the cues were displayed. The frame of reference is disrupted when a black spot is added to the training pattern. There is abundant evidence that the bees do not re-assemble the pattern or learn shapes. The filters that detect the position and orientation cues are coarsely tuned, so that they respond in a graded way, but the memory of the range of directions of the cue, as seen from the point of choice, is more exact.  相似文献   

12.
We authors propose a mathematical model for simple cell binocular response. It comprises two Gabor-type receptive fields (RF) having the same RF center, preferred spatial frequency, and preferred orientation. The model integrates the equally weighted signals from both eyes and performs a threshold operation. Poggio and Fischer (1977) classified binocular disparity cells in the striate cortex into four groups: tuned excitatory (TE), tuned inhibitory (TI), near, and far cells. They also found that most of the TE cells are ocularly balanced and that the other three types are usually unbalanced. This model can imitate these four types of disparity sensitivities and their ocular dominance tendency. We perform model fittings to Poggio's data using the “simulated annealing” method and discuss parameter dependence of the model's response. The model can also respond with exceptional disparity sensitivity: i.e., flat type, alternating type, and intermediate type.  相似文献   

13.
The orientation tuning properties of the non-classical receptive field (nCRF or “surround”) relative to that of the classical receptive field (CRF or “center”) were tested for 119 neurons in the cat primary visual cortex (V1). The stimuli were concentric sinusoidal gratings generated on a computer screen with the center grating presented at an optimal orientation to stimulate the CRF and the surround grating with variable orientations stimulating the nCRF. Based on the presence or absence of surround suppression, measured by the suppression index at the optimal orientation of the cells, we subdivided the neurons into two categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells. When stimulated with an optimally oriented grating centered at CRF, the SS cells showed increasing surround suppression when the stimulus grating was expanded beyond the boundary of the CRF, whereas for the SN cells, expanding the stimulus grating beyond the CRF caused no suppression of the center response. For the SS cells, strength of surround suppression was dependent on the relative orientation between CRF and nCRF: an iso-orientation grating over center and surround at the optimal orientation evoked strongest suppression and a surround grating orthogonal to the optimal center grating evoked the weakest or no suppression. By contrast, the SN cells showed slightly increased responses to an iso-orientation stimulus and weak suppression to orthogonal surround gratings. This iso-/orthogonal orientation selectivity between center and surround was analyzed in 22 SN and 97 SS cells, and for the two types of cells, the different center-surround orientation selectivity was dependent on the suppressive strength of the cells. We conclude that SN cells are suitable to detect orientation continuity or similarity between CRF and nCRF, whereas the SS cells are adapted to the detection of discontinuity or differences in orientation between CRF and nCRF.  相似文献   

14.
Two-dimensional spatial frequency characteristics of receptive fields of 46 neurons in the lateral suprasylvian area of the cat cortex were obtained. These receptive fields possessed orientation anisotropy. Peak frequencies lay in the frequency region below 1.5 cycles/deg. The transmission band width was measured during optimal orientation of test gratings in 21 neurons. It averaged 1.47±0.6 octave. In the remaining neurons the lower boundary frequency was shifted into the region of spatial frequencies below the range used. During nonoptimal orientation of test gratings, inhibition of the discharge was observed in 17 neurons. The inhibitory spatial frequency characteristics of six neurons were of the narrow band type, and averaged 1.1±0.6 octave.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 608–614, November–December, 1982.  相似文献   

15.
In images of textured 3-D surfaces, orientation flows created by the texture components parallel to the surface slant play a critical role in conveying the surface slant and shape. This study examines the visibility of these orientation flows in complex patterns. Specifically, we examine the effect of orientation of neighboring texture components on orientation flow visibility. Complex plaids consisting of gratings equally spaced in orientation were mapped onto planar and curved surfaces. The visibility of the component that creates the orientation flows was quantified by measuring its contrast threshold (CT) while varying the combination of neighboring components present in the pattern. CTs were consistently lowest only when components closest in orientation to that of the orientation flows were subtracted from the pattern. This finding suggests that a previously reported frequency-selective cross-orientation suppression mechanism involved with the perception of 3-D shape from texture is affected by proximity in orientation of concurrent texture components.  相似文献   

16.
The biological effects of modulated radiofrequency (RF) electromagnetic fields have been a subject of debate since early publications more than 30 years ago, suggesting that relatively weak amplitude-modulated RF electromagnetic fields have specific biological effects different from the well-known thermal effects of RF energy. This discussion has been recently activated by the increasing human exposure to RF fields from wireless communication systems. Modulation is used in all wireless communication systems to enable the signal to carry information. A previous review in 1998 indicated that experimental evidence for modulation-specific effects of RF energy is weak. This article reviews recent studies (published after 1998) on the biological effects of modulated RF fields. The focus is on studies that have compared the effects of modulated and unmodulated (continuous wave) RF fields, or compared the effects of different kinds of modulations; studies that used only one type of signal are not included. While the majority of recent studies have reported no modulation-specific effects, there are a few interesting exceptions indicating that there may be specific effects from amplitude-modulated RF fields on the human central nervous system. These findings warrant follow-up studies.  相似文献   

17.
Simple cells in the primary visual cortex process incoming visual information with receptive fields localized in space and time, bandpass in spatial and temporal frequency, tuned in orientation, and commonly selective for the direction of movement. It is shown that performing independent component analysis (ICA) on video sequences of natural scenes produces results with qualitatively similar spatio-temporal properties. Whereas the independent components of video resemble moving edges or bars, the independent component filters, i.e. the analogues of receptive fields, resemble moving sinusoids windowed by steady Gaussian envelopes. Contrary to earlier ICA results on static images, which gave only filters at the finest possible spatial scale, the spatio-temporal analysis yields filters at a range of spatial and temporal scales. Filters centred at low spatial frequencies are generally tuned to faster movement than those at high spatial frequencies.  相似文献   

18.
Visual channels are defined psychophysically; stimuli that interact share information in the same channel, and those that do not interact are processed in different channels. Channels are often investigated by means of adaptation to one stimulus, testing contrast threshold elevation with one (or more) others. Much recent work has tested the tuning of channels for orientation and spatial frequency, using simple line gratings. This study examined the pattern-specificity of such adaptation, testing the hypothesis that the fundamental operators of the Lie Transformation Group Theory of Neuropsychology (LTG/NP) define psychophysical channels. In Experiment I the three basic pattern pairs of LTG/NP were used as adaptation and test stimuli in a conventional contrast threshold-elevation experiment. Threshold elevation was pattern-specific, thus supporting the hypothesis. In subsequent experiments various 'fractured' patterns, and patterns generated by combinations of Lie operators were used both for adaptation and test. The results were mixed; some supported the original hypothesis, but many did not. Relations between local contour orientations in adaptation and test patterns could explain some results, but not all. The hypothesis that adaptation occurs to the oriented spatial-frequency components of the test patterns, on the other hand, gave a good fit to the data. It is concluded that there is pattern-specificity in contrast threshold elevation, but it is a form of specificity that can be explained without recourse to a model of geometrical pattern processing, at least for the simple patterns used here.  相似文献   

19.
A model for the development of spatiotemporal receptive fields of simple cells in the visual cortex is proposed. The model is based on the 1990 hypothesis of Saul and Humphrey that the convergence of four types of input onto a cortical cell, viz. non-lagged ON and OFF inputs and lagged ON and OFF inputs, underlies the spatial and temporal structure of the receptive fields. It therefore explains both orientation and direction selectivity of simple cells. The response properties of the four types of input are described by the product of linear spatial and temporal response functions. Extending the 1994 model of one of the authors (K.D. Miller), we describe the development of spatiotemporal receptive fields as a Hebbian learning process taking into account not only spatial but also temporal correlations between the different inputs. We derive the correlation functions that drive the development both for the period before and after eye-opening and demonstrate how the joint development of orientation and direction selectivity can be understood in the framework of correlation-based learning. Our investigation is split into two parts that are presented in two papers. In the first, the model for the response properties and for the development of direction-selective receptive fields is presented. In the second paper we present simulation results that are compared with experimental data, and also provide a first analysis of our model. Received: 18 June 1997 / Accepted: 16 September 1997  相似文献   

20.
T S Meese 《Spatial Vision》1999,12(3):363-394
Visual neurons in the primary visual cortex 'look' at the retinal image through a four-dimensional array of spatial receptive fields (filter-elements): two spatial dimensions and, at each spatial location, two Fourier dimensions of spatial frequency and orientation. In general, visual objects activate filter-elements along each of these dimensions, suggesting a need for some kind of linking mechanism that determines whether two or more filter-elements are responding to the same or different contours or objects. In the spatial domain, a (spatial) association field between filter-elements, arranged to form first-order curves, has been inferred as a flexible method by which different parts of extended (luminance) contours become associated (Field et al., 1993). Linking has also been explored between filters selective for different regions in Fourier space (e.g. Georgeson and Meese, 1997). Perceived structure of stationary plaids suggests that spatial filtering is adaptive: synthetic filters can be created by the linear summation of basis-filters across orientation or spatial frequency in a stimulus-dependent way. For example, a plaid with a pair of sine-wave components at +/-45 deg looks like a blurred checkerboard; a structure that can be understood if features are derived after linear summation of spatial filters at different orientations. However, the addition of an oblique third-harmonic component causes the plaid to perceptually segment into overlapping oblique contours. This result can be understood if filters are summed across spatial frequency, but, in this case, treated independently across orientation. In the present paper, the architecture of an association field is proposed to permit linking and segmentation of filter-elements across spatial frequency and orientation. Three types of link are proposed: (1) A chain of constructive links around sites of common spatial frequency but different orientation, to promote binding of filters across orientation; (2) Constructive links between sites with common orientation but different spatial frequency, to promote binding of filters across spatial frequency; (3) Long-range links between sites of common spatial frequency but different orientation, whose activation and role are determined by activity in a higher spatial frequency band. A model employing the proposed network of links is consistent with at least six previously reported effects on the perception of briefly presented stationary plaids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号