首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common type of complex receptive field, whose response to the passage of sinusoidal gratings across it consisted of modulated and unmodulated components, was analyzed. The use of a mask to cover half the field, according to the filter theory, led to widening of the transmission band of the field as a spatial frequency filter, due to the appearance or enhancement of the response at lateral low and high frequencies. Modulated components of responses from the left and right halves of the field were out of phase. Analysis of this fact, and also of responses of the field to thin light and dark bars enabled the field structure to be described. It consists of linear and nonlinear subsystems, converging on the output neuron of the complex field. The former is composed of several pairs of on- and off-subfields of the lateral geniculate body. The on- and off-subfields in the pair overlap spatially and converge on the output neuron of the linear subsystem with opposite signs. The nonlinear subsystem is composed of either on- or off-subfields. Other types of complex fields may include different combinations of subsystems. The results indicate that complex fields are spatiotemporal grating filters.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 19–25, January–February, 1982.  相似文献   

2.
3.
The purpose of this study was to explore the effects of spatial and temporal properties on the expected responses of visual neurons that have linear receptive fields (RFs), particularly those having a mirror symmetric distribution of spatial subregions. Receptive fields that are symmetric in at least one spatial dimension occur in neurons of the retina, the lateral geniculate nucleus (LGN), and the visual cortex of mammals. Responses to flashing bars, moving bars, and moving edges were studied for different configurations of an analog RF model in which spatial and temporal aspects were varied independently. Responses of the model at intermediate stimulus speeds were found to agree with responses in the literature for X and Y units of the LGN and often for simple units of the visual cortex. In particular, having separated regions of response to light and dark edges, an identifying property of simple cells, was found to be a linear consequence of RF regions responding inversely to stimuli of opposite polarity. Model differences from responses of cortical complex units show that a linear model cannot mimic their responses, and imply that complex units employ major nonlinearities in coding image polarity (light vs dark), which signifies a nonlinearity in coding intensity. Because sudden flux changes inherent in flashing bars test mainly temporal RF properties, and slowly moving edges test mainly spatial properties, these two tests form a useful minimal set with which to describe and classify RFs. The usefulness of this set derives both from its sensitivity to spatial and temporal variables, and from the correlation between the linearity of a cell's processing of stimulus intensity and its RF classification.  相似文献   

4.
Touryan J  Felsen G  Dan Y 《Neuron》2005,45(5):781-791
Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass. These subunits contribute to neuronal responses in a contrast-dependent, polarity-invariant manner, and they can largely predict the orientation and spatial frequency tuning of the cell. Although the RF structures measured with natural images were similar to those measured with random stimuli, natural images were more effective for driving complex cells, thus facilitating rapid identification of the subunits. The subunit RF model provides a useful basis for understanding cortical processing of natural stimuli.  相似文献   

5.
Using extracellular recording of spike activity from single neurons of field 21a of the cat neocortex, we examined in detail the spatial organization of receptive fields (RFs) of such cells after conditions of presentation of an immobile blinking light spot (a static RF) and moving visual stimuli (dynamic RFs). As was shown, the excitability of different RF subfields of a group of neurons possessing homogeneous on–off organization of the static RF changes significantly depended on the contrast, shape, dimension, orientation, and direction of movement of the applied mobile visual stimulus. This is manifested in changes in the number of discharge centers and shifts of their spatial localization. A hypothesis on the possible role of synchronous activation of the neurons neighboring the cell under study in the formation of an additional neuronal mechanism providing specialization of neuronal responses is proposed.  相似文献   

6.
In the Type I receptive fields (RFs) changes of the luminance leads to a shift of the curve relating the response and the stimulus area along the abscissa, in the Type II RFs the maximum of a response does not shift with changes of the luminance (Types I and II on classification by Glezer et al., 1971, 1972). The transient responses were observed in the Type I RFs and sustained responses in the Type II RFs. In the Type I RFs variation of the stimulus area and intensity brings about the change in the temporal and spatial frequency characteristics. This is produced by functional reorganization of the RF. In the Type II RFs there is no functional reorganization. The data obtained indicate that the Type I RFs are non-linear. By contrast, the Type II RFs are linear systems. The analysis of the model has shown that the distinctions in the dynamic characteristics of the responses of RFs belonging to different types is mainly due to different time constants for excitation and inhibition as well as inhibition coefficients. Distinctions in the mode of dependence of the RF response on stimulus parameters have been found to result from different relationship between delay time and stimulus parameters as well as different forms of the spatial weighting functions. It is shown that the Type I RFs transmit higher frequency components of the image spectrum, i.e. they emphasise the temporal and spatial contrasts. The Type II RFs transmit low frequency components of the spectrum including information about the intensity of an input stimulus.  相似文献   

7.
We investigated receptive field properties of cat retinal ganglion cells with visual stimuli which were sinusoidal spatial gratings amplitude modulated in time by a sum of sinusoids. Neural responses were analyzed into the Fourier components at the input frequencies and the components at sum and difference frequencies. The first-order frequency response of X cells had a marked spatial phase and spatial frequency dependence which could be explained in terms of linear interactions between center and surround mechanisms in the receptive field. The second-order frequency response of X cells was much smaller than the first-order frequency response at all spatial frequencies. The spatial phase and spatial frequency dependence of the first-order frequency response in Y cells in some ways resembled that of X cells. However, the Y first-order response declined to zero at a much lower spatial frequency than in X cells. Furthermore, the second-order frequency response was larger in Y cells; the second-order frequency components became the dominant part of the response for patterns of high spatial frequency. This implies that the receptive field center and surround mechanisms are physiologically quite different in Y cells from those in X cells, and that the Y cells also receive excitatory drive from an additional nonlinear receptive field mechanism.  相似文献   

8.
Comparison of unit responses of simple receptive fields of the cat visual cortex (area 17) to presentation of sinusoidal gratings and thin light and dark bars showed that excitatory and inhibitory on- and off-zones of the field are composed of on- and off-subfields of the lateral geniculate body converging on the cortical neuron. Each zone is formed by a pair of opposing subfields, activation of one of which gives an excitatory, and the other, an inhibitory effect. This organization is evidence that the simple field has linear properties. However, a real simple field is not a linear system because of deviations from the ideal organization described above, namely displacement of the subfields relative to each other, nonhomogeneity of the properties of the subfields, and absence of an antagonistic subfield in one of the zones. Even within the same field phasic and tonic subfields may be present.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 339–344, July–August, 1981.  相似文献   

9.
In 22 acute experiments in anesthetized and immobilized adult cats the dynamics of 83 receptive fields (RF) of 47 striate neurons was studied by temporal slices method. Classical mapping revealed wave-like changes in the area and weight of neuronal RFs. Special mathematical analysis showed that such changes represented a sum of a slow non-oscillatory and comparatively fast components. The slow component was a biphasic up and down RF dynamics. In most cases, the oscillation frequencies were within the alpha- and beta- EEG frequency ranges. When the RF center was activated additionally during combined mapping, the oscillations frequencies remained unchanged, but the duration and amplitude of non-oscillatory component substantially decreased. Mechanisms underlying the RF dynamics and its functional significance are discussed.  相似文献   

10.
The detection of acoustic communication signals in the presence of sinusoidally amplitude modulated noise was investigated in males of the grasshopper Chorthippus biguttulus. The auditory system of grasshoppers exhibits only poor spectral resolution. Hence, these animals are ideally suited to investigate noise tolerance in a system operating in the temporal domain. As a sensitive indicator for signal recognition the conspicuous phonotactic turning responses of males were recorded. The main result was that noise modulated at low frequencies (1.5-5 Hz) did not impair recognition compared to a unmodulated noise. With long stimuli even a moderate improvement of noise tolerance was observed, an effect that can probably be attributed to the existence of long troughs at low modulation frequencies during which the masking of the signal was reduced. Higher modulation frequencies (15-150 Hz), however, rendered detection and recognition increasingly difficult, due to a strong interference of the sound pulses of the masking noise with the syllable-pause structure of the species-specific signals. There are no indications for the operation of mechanisms analogous to comodulation masking release as found in vertebrates, nor for a spatial release from masking.  相似文献   

11.
Cellular effects of electromagnetic fields   总被引:3,自引:0,他引:3  
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by power lines and electric devices) and 872 MHz or 900 MHz RFs (emitted by mobile phones and their base stations) on cellular ornithine decarboxylase activity, cell cycle kinetics, cell proliferation, and necrotic or apoptotic cell death. For RFs, pulse-modulated (217 Hz modulation frequency corresponding a global system for mobile communication-type signal) or continuous wave (unmodulated) signals were used. To expose the cell cultures to MFs or RFs, specially developed exposure systems were used, where levels of electromagnetic field exposure and the conditions of cell culture could be precisely controlled. A coexposure approach was used in many studies, i.e. the cell cultures were exposed to other stressors in addition to MFs or RFs. Ultraviolet radiation, serum deprivation, or fresh medium addition, were used as co-exposures. The results presented in this short review show that the effects of mere MFs or RF on cell culture models are quite minor, but that various co-exposure approaches warrant additional study.  相似文献   

12.
Goense JB  Feng AS 《PloS one》2012,7(2):e31589
Natural auditory scenes such as frog choruses consist of multiple sound sources (i.e., individual vocalizing males) producing sounds that overlap extensively in time and spectrum, often in the presence of other biotic and abiotic background noise. Detection of a signal in such environments is challenging, but it is facilitated when the noise shares common amplitude modulations across a wide frequency range, due to a phenomenon called comodulation masking release (CMR). Here, we examined how properties of the background noise, such as its bandwidth and amplitude modulation, influence the detection threshold of a target sound (pulsed amplitude modulated tones) by single neurons in the frog auditory midbrain. We found that for both modulated and unmodulated masking noise, masking was generally stronger with increasing bandwidth, but it was weakened for the widest bandwidths. Masking was less for modulated noise than for unmodulated noise for all bandwidths. However, responses were heterogeneous, and only for a subpopulation of neurons the detection of the probe was facilitated when the bandwidth of the modulated masker was increased beyond a certain bandwidth - such neurons might contribute to CMR. We observed evidence that suggests that the dips in the noise amplitude are exploited by TS neurons, and observed strong responses to target signals occurring during such dips. However, the interactions between the probe and masker responses were nonlinear, and other mechanisms, e.g., selective suppression of the response to the noise, may also be involved in the masking release.  相似文献   

13.
The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of cortical spatial frequency tuning. As feedforward input from the lateral geniculate nucleus (LGN) has been shown to have significant influence on cortical coarse-to-fine processing, we present a firing-rate based thalamocortical model which includes both feedforward and feedback components. We analyze the relationship between various model parameters (including cortical feedback strength) and responses. We confirm the importance of the antagonistic relationship between the center and surround responses in thalamic relay cell receptive fields (RFs), and further characterize how specific structural LGN RF parameters affect cortical coarse-to-fine processing. Our results also indicate that the effect of cortical feedback on spatial frequency tuning is age-dependent: in particular, cortical feedback more strongly affects coarse-to-fine processing in kittens than in adults. We use our results to propose an experimentally testable hypothesis for the function of the extensive feedback in the corticothalamic circuit.  相似文献   

14.
In 27 acute experiments with anesthetized and immobilized adult cats 101 maps of receptive field (RF) in 67 striate neurons were studied by means of mapping with single flashed stimuli presented in different parts of the visual field and under conditions of additional activation of the RF excitatory center by the local oscillating or flashing grid. Under conditions of both classical and combined modes of mapping, the RFs of the classical shape with a single excitatory zone (63.4 and 29.3% of cases, respectively) and RFs with multiple (2-5) excitatory and/or inhibitory zones (36.6 and 70.7%, respectively) were found. We were the first to describe, also, some RFs of horseshoe-like, cross-like and T-like shapes. Simulation of non-classical RFs revealed possible contributions of cooperative excitatory and inhibitory intracortical interactions to the effects under study. The functional role of RFs of different types in the feature detection is discussed.  相似文献   

15.
Organization of the receptive fields (RFs) of neurons of the extrastriate associative region 21b of the cerebral cortex was studied in cats. Most neurons under study (63%) were “monocular,” while 37% of the cells were “binocular” units. Among 178 neurons examined in detail, heterogeneous RF functional organization was typical of about 76% of the units; point-to-point testing of the entire RF area by stationary stimuli resulted in the generation of various types of responses (on, off, or on-off). The rest of the neurons (24%) generated homogeneous responses. The dimension, form, and functional organization of RFs of the neurons under study depended to a certain extent on the parameters of visual stimuli used for the measurements. Examination of the influence of the visual space, which surrounded the RF, on responses of the neurons evoked by stimulation of the RF per se showed that darkening of the visual space adjacent to the RF inhibited neuronal responses to moving stimuli; in some cases the responses were totally suppressed. Analysis of spatial overlapping of the RF sequentially recorded in the course of each insertion of the electrode showed that the density of distribution of the overlapping RF areas of neighboring neurons with the RF of the examined neuron is irregular, and that the RF is of a mosaic nature. We hypothesize that the visual space surrounding the RF plays a significant role in the formation of responses of visually sensitive neurons to presentation of moving stimuli. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 223–234, May–June, 2005.  相似文献   

16.
Time amplitude -- frequency characteristics of the I and II types of receptive fields (RF) of lateral geniculate and their dependence on the contrast and spatial parameters of the light stimulus were studied. It is shown that the frequency characteristics of the RF I type depends on the contrast and area of the light stimulus, the higher being the contrast at a small area the smaller are the low frequencies. However at a large area of the stimulus the inhibition of low frequencies is greater at a small contrast. The transmitting band of frequency characteristics of RF II type does not depend on the contrast at a small area of the stimulus, at a large area a fall of low frequencies takes place at high contrasts of the stimulus. Such different behaviour of the receptive fields is explained by the models, which take into account RF spatial characteristics.  相似文献   

17.
Changes in visual receptive fields with microstimulation of frontal cortex   总被引:7,自引:0,他引:7  
The influence of attention on visual cortical neurons has been described in terms of its effect on the structure of receptive fields (RFs), where multiple stimuli compete to drive neural responses and ultimately behavior. We stimulated the frontal eye field (FEF) of passively fixating monkeys and produced changes in V4 responses similar to known effects of voluntary attention. Subthreshold FEF stimulation enhanced visual responses at particular locations within the RF and altered the interaction between pairs of RF stimuli to favor those aligned with the activated FEF site. Thus, we could influence which stimulus drove the responses of individual V4 neurons. These results suggest that spatial signals involved in saccade preparation are used to covertly select among multiple stimuli appearing within the RFs of visual cortical neurons.  相似文献   

18.
Tao HW  Poo MM 《Neuron》2005,45(6):829-836
The receptive field (RF) of single visual neurons undergoes progressive refinement during development. It remains largely unknown how the excitatory and inhibitory inputs on single developing neurons are refined in a coordinated manner to allow the formation of functionally correct circuits. Using whole-cell voltage-clamp recording from Xenopus tectal neurons, we found that RFs determined by excitatory and inhibitory inputs in more mature tectal neurons are spatially matched, with each spot stimulus evoking balanced synaptic excitation and inhibition. This emerges during development through a gradual reduction in the RF size and a transition from disparate to matched topography of excitatory and inhibitory inputs to the tectal neurons. Altering normal spiking activity of tectal neurons by either blocking or elevating GABA(A) receptor activity significantly impeded the developmental reduction and topographic matching of RFs. Thus, appropriate inhibitory activity is essential for the coordinated refinement of excitatory and inhibitory connections.  相似文献   

19.
The primary visual cortex is organized into clusters of cells having similar receptive fields (RFs). A purely feedforward model has been shown to produce realistic simple cell receptive fields. The modeled cells capture a wide range of receptive field properties of orientation selective cortical cells. We have analyzed the responses of 78 nearby cell pairs to study which RF properties are clustered. Orientation preference shows strongest clustering. Orientation tuning width (hwhh) and tuning height (spikes/sec) at the preferred orientation are not as tightly clustered. Spatial frequency is also not as tightly clustered and RF phase has the least clustering. Clustering property of orientation preference, orientation tuning height and width depend on the location of cells in the orientation map. No such location dependence is observed for spatial frequency and RF phase. Our results agree well with experimental data.  相似文献   

20.
Receptive fields (RFs) of single units in the 17th field of the visual cortex of immobilized cat were investigated under dark adaptation. The mean RF size was equal to 67 degrees and varied from 3 degrees up to 120 degrees. The RFs with centres located near gaze were from 3 degrees up to 120 degrees in dia, but with growth of excentricity the number of small RFs decreased, and in the region of 70 to 100 degrees from gaze only RFs with diameters equal to 100 degrees were found. The shape of "dark" RFs was either ellipsoidal (in most cases) or round. Detector properties (orientational, directional, size and velocity selectivity) of the "dark" RFs were significantly less manifest or absent. Under photopic light adaptation the same units reorganized their RFs to well known sizes and configuration. The hypothesis is discussed of the formation of local detector RF in the visual cortex in light adaptation by selective cortical inhibition which is activated in darkness only slightly. This view is an alternative to the commonly-accepted scheme of local cortical RF formation by the hierarchical and selective excitatory convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号