首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater.  相似文献   

2.
The process of nitrification–denitrification via nitrite for nitrogen removal under real-time control mode was tested in two laboratory-scale sequencing batch reactors (SBRs) with flocculent activated sludge (R1) and aerobic granular sludge (R2) to compare operational performance and real-time control strategies. The results showed that the average ammonia nitrogen, total inorganic nitrogen (TIN), and chemical oxygen demand (COD) removal during aeration phase were 97.6%, 57.0%, and 90.1% in R2 compared with 98.6%, 48.7%, and 88.1% in R1. The TIN removed in both SBRs was partially due to the presence of simultaneous nitrification–denitrification via nitrite, especially in R2. The specific nitrification and denitrification rates in R2 were 0.0416 mgNH4+–N/gSS-min and 0.1889 mgNOX–N/gSS-min, which were 1.48 times and 1.35 times that of R1. The higher rates for COD removal, nitrification, and denitrification were achieved in R2 than R1 with similar influent quality. Dissolved oxygen (DO), pH, and oxidization reduction potential, corresponding to nutrient variations, were used as diagnostic parameters to control the organic carbon degradation and nitrification–denitrification via nitrite processes in both SBRs. The online control strategy of granular SBR was similar to that of the SBR with flocculent activated sludge. However, a unique U-type pattern on the DO curve in granular SBR was different from SBR with flocculent activated sludge in aerobic phase.  相似文献   

3.
Fu Z  Yang F  Zhou F  Xue Y 《Bioresource technology》2009,100(1):136-141
A modified membrane bioreactor (MBR) system has been developed to evaluate the efficiency of nutrient removal in treating synthetic high strength water. This study examined the effect of influent COD/N ratio on this system. Results showed that above 95.0% removal efficiencies of organic matter were achieved; indicating COD removal was irrespective of COD/N ratio. The average removal efficiencies of total nitrogen (TN) and phosphate (PO(4)(3-)-P) with a COD/N ratio of 9.3 were the highest at 90.6% and 90.5%, respectively. Furthermore, TN removal was primarily based on simultaneous nitrification and denitrification (SND) process occurred in the aerobic zone. Decreased COD/N ratios to 7.0 and 5.3, TN removal efficiencies in steady-states were 69.3% and 71.2%, respectively. Both aerobic SND and conventional biological nitrification/denitrification contributed to nitrogen removal and the latter played dominant effect. PO(4)(3-)-P-release and uptake process ceased in steady-states of COD/N 7.0 and 5.3, which decreased its removal efficiency significantly.  相似文献   

4.
Aerobic granular sludge is a new type of microbe auto-immobilization technology; in this paper, short-cut nitrification and denitrification were effectively combined with the granular sludge technology. Simultaneous nitrification and denitrification granules were developed in a sequencing batch reactor (SBR) using synthetic wastewater with a high concentration of ammonia nitrogen at 25 °C with a dissolved oxygen concentration above 2.0 mg/L and a 15 days sludge retention time. The characteristics of the sludge and the removal efficiency were studied, and the removal mechanisms of the pollutants and the process of short-cut nitrification were analyzed. The average granule diameter of the granular sludge was 704.0 μm. The removal rates of pollutants and the accumulation rate of nitrite in the SBR were studied. During treatment of wastewater with a high concentration of ammonia nitrogen, simultaneous nitrification, and denitrification and the stripping process could contribute to the removal of total nitrogen. The high pH value, the high concentration of free ammonia, and the delamination of granular sludge were the main factors contributing to the short-cut nitrification property of granular sludge in the reaction process.  相似文献   

5.
An Y  Yang F  Chua HC  Wong FS  Wu B 《Bioresource technology》2008,99(9):3714-3720
A combined system consisting of an up-flow anaerobic sludge blanket (UASB) and an aerobic membrane bioreactor (MBR) was operated at 28-30 degrees C and pH 7.8-8.1 for the treatment of low-strength synthetic wastewater enriched with organic carbon and NH4Cl. The MBR slurry was recirculated into the UASB with a ratio of 50-800%. It was found that nitrite was able to accumulate steadily during the nitrification step in the MBR at a low TOC/NH4+-N ratio. The mixed liquid containing NOX(-)-N in the MBR was recirculated to the UASB, and denitrification rather than methanogenesis became the preferred pathway. Whereas, the less carbon requirement for denitrification via nitrite rather than nitrate allowed methanogenesis to proceed simultaneously in the same reactor. The combination of membrane filtration and partial nitrification in the MBR with simultaneous denitrification and methanogenesis in the UASB could stably reach 98% TOC removal and 48.1-82.8% TN removal with recirculation ratio increasing from 50% to 800%.  相似文献   

6.
Chang CY  Tanong K  Xu J  Shon H 《Bioresource technology》2011,102(9):5337-5344
A two-stage aerobic membrane bioreactor (MBR) system for treating acrylonitrile butadiene styrene (ABS) resin wastewater was carried out in this study to evaluate the system performance on nitrification. The results showed that nitrification of the aerobic MBR system was significant and the highest TKN removal of approximately 90% was obtained at hydraulic retention time (HRT) 18 h. In addition, the result of nitrogen mass balance revealed that the percentage of TN removal due to denitrification was in the range of 8.7-19.8%. Microbial community analysis based on 16s rDNA molecular approach indicated that the dominant ammonia oxidizing bacteria (AOB) group in the system was a β-class ammonia oxidizer which was identified as uncultured sludge bacterium (AF234732). A heterotrophic aerobic denitrifier identified as Thauera mechernichensis was found in the system. The results indicated that a sole aerobic MBR system for simultaneous removals of carbon and nitrogen can be designed and operated for neglect with an anaerobic unit.  相似文献   

7.
The biological removal of nitrogen and phosphorus from nutrient-rich abattoir wastewater using granular sludge has been investigated. A lab-scale sequencing batch reactor, seeded with granular sludge developed using synthetic wastewater, was operated for 13 months under alternating anaerobic and aerobic conditions. It is demonstrated that the granules could be sustained and indeed further developed with the use of abattoir wastewater. The organic, nitrogen, and phosphorus loading rates applied were 2.7 gCOD L(-1) day(-1), 0.43 gN L(-1) day(-1), and 0.06 gP L(-1) day(-1), respectively. The removal efficiency of soluble COD, soluble nitrogen and soluble phosphorus were 85%, 93%, and 89%, respectively. However, the high suspended solids in the effluent limited the overall removal efficiency to 68%, 86%, and 74% for total COD, TN, and TP, respectively. This good nutrient removal was achieved through the process known as simultaneous nitrification, denitrification, and phosphorus removal, likely facilitated by the presence of large anoxic zones in the center of the granules. The removal of nitrogen was likely via nitrite optimizing the use of the limited COD available in the wastewater. Accumulibacter spp. were found to be responsible for most of the denitrification, further reducing the COD requirement for nitrogen and phosphorus removal. Mineral precipitation was evaluated and was not found to significantly contribute to the overall nutrient removal. It is also shown that the minimum HRT in a granular sludge system is not governed by the sludge settleability, as is the case with floccular sludge systems, but likely by the limitations associated with the transfer of substrates in granules.  相似文献   

8.
An aerobic granular sludge membrane bioreactor (GMBR) was applied to the treatment of pharmaceutical and personal care products (PPCPs) wastewater. The influence of granular sludge on five antibiotic and antiphlogistic PPCPs wastewater and the removal effect of methyl alcohol and conventional organic matter were investigated while constantly reducing the density of inflow organic matter. The results showed that the sludge granulation process in the system was rapid but unstable, and that the system exhibits a dissolution–reunion dynamic equilibrium. The reactor demonstrated varying removal effects of PPCPs on different objects. The use of a GMBR was more effective for the removal of prednisolone, naproxen, and ibuprofen; the first two drugs were lower the average removal rate of which reached 98.46 and 84.02 %, respectively; whereas the average removal rate of ibuprofen was 63.32 %. By contrast, the GMBR has an insignificant degradation effect on antibiotics such as amoxicillin, indicating that such antibiotic medicine is not easily degraded by microorganisms, which plays different roles in system operation. Because of the different chemical structures and characteristics of drugs that result in various degradation behavior. During the GMBR granulation process, the value of mixed liquor volatility suspended solids (MLVSS) gradually increases from 1.5 to 4.1 g/L during the GMBR granulation process, and the removal rate of CODCr reaches up to 87.98 %. After reducing the density of organic matter is reduced, the removal rates of NH3-N and TP both reach more than 90 %, respectively. Moreover, the proposed technique is considerably effective in the removal of methanol.  相似文献   

9.
Kinetic model of a granular sludge SBR: influences on nutrient removal   总被引:6,自引:0,他引:6  
A mathematical model was developed that can be used to describe an aerobic granular sludge reactor, fed with a defined influent, capable of simultaneously removing COD, nitrogen and phosphate in one sequencing batch reactor (SBR). The model described the experimental data from this complex system sufficiently. The effect of process parameters on the nutrient removal rates could therefore be reliably evaluated. The influence of oxygen concentration, temperature, granule diameter, sludge loading rate, and cycle configuration were analyzed. Oxygen penetration depth in combination with the position of the autotrophic biomass played a crucial role in the conversion rates of the different components and thus on overall nutrient removal efficiencies. The ratio between aerobic and anoxic volume in the granule strongly determines the N-removal efficiency as it was shown by model simulations with varying oxygen concentration, temperature, and granule size. The optimum granule diameter for maximum N- and P-removal in the standard case operating conditions (DO 2 mg L(-1), 20 degrees C) was found between 1.2 and 1.4 mm and the optimum COD loading rate was 1.9 kg COD m(-3) day(-1). When all ammonia is oxidized, oxygen diffuses to the core of the granule inhibiting the denitrification process. In order to optimize the process, anoxic phases can be implemented in the SBR-cycle configuration, leading to a more efficient overall N-removal. Phosphate removal efficiency mainly depends on the sludge age; if the SRT exceeds 30 days not enough biomass is removed from the system to keep effluent phosphate concentrations low.  相似文献   

10.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

11.

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7–5.1 in the influent. Simultaneous nitrification–denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6–97.4% and 34.4–60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4–6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12–29.33%), Burkholderiales (2.15–21.38%), and Sphingobacteriales (2.92–11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.

  相似文献   

12.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

13.
Denitrifying granular sludge reactor holds better nitrogen removal efficiency than other kinds of denitrifying reactors, while this reactor commonly needs seeding anaerobic granular sludge and longer period for start-up in practice, which restricted the application of denitrifying granular sludge reactor. This study presented a rapid and stable start-up method for denitrifying granular sludge. An upflow sludge blanket (USB) reactor with packings was established with flocculent activated sludge for treatment of high concentration nitrite wastewater. Results showed mature denitrifying granular sludge appeared only after 15 days with highest nitrogen removal rate of 5.844 kg N/(m3 day), which was much higher than that of compared anoxic sequencing batch reactor (ASBR). No significant nitrite inhibition occurred in USB and denitrification performance was mainly influenced by hydraulic retention time, influent C/N ratio and internal reflux ratio. Hydraulic shear force created by upflow fluid, shearing of gaseous products and stable microorganisms adhesion on the packings might be the reasons for rapid achievement of granular sludge. Compared to inoculated sludge and ASBR, remarkable microbial communitiy variations were detected in USB. The dominance of Proteobacteria and Bacteroidetes and enrichment of species Pseudomonas_stutzeri should be responsible for the excellent denitrification performance, which further verified the feasibility of start-up method.  相似文献   

14.
在序批式间歇反应器(R1、R2和R3)中,采用乙酸钠(R1)、蔗糖(R2)和苯酚(R3)三种不同基质作为碳源,均成功地培养出了好氧颗粒污泥;考察了不同颗粒污泥的理化性质及其对污染物的转化能力。结果表明,R1中颗粒污泥外观呈黄色,其主要的微生物菌群为细菌;R2中颗粒污泥外观呈黑色,内部含有丝状菌;而R3中颗粒污泥表面被大量丝状菌包裹,颗粒污泥呈淡黄色。在进水COD1000mg/L时R1、R2和R3中颗粒污泥比有机物的利用速率大小顺序为R3〉R1〉R2,而COD的去除率顺序却为R2〉R1〉R3。在进水氨氮40mg/L时,R1、R2和R3中氨氮的去除率分别在91%、96%和80%以上。以不同的底物培养出不同的好氧颗粒污泥可以拓展其在有毒化学物质如酚类化合物和高浓度工业废水生物处理中的应用。  相似文献   

15.
Nitrogen transformations during aerobic/anoxic sludge digestion   总被引:8,自引:0,他引:8  
Laboratory experiments were conducted to study and compare nitrogen transformations occurring under both aerobic digestion and aerobic/anoxic (A/A) digestion. The process performance was examined at different sludge residence times (SRTs), temperatures and anoxic cycles. Both modes of operation gave comparable solids reduction results. However, introduction of anoxic periods to aerobic sludge digestion appears to be a promising alternative to control pH during digestion through endogenous nitrate respiration (ENR). Operating an aerobic digester with an anoxic phase to achieve complete denitrification would also improve supernatant quality over that achieved solely by aerobic digestion. Alternating A/A operation can conserve most of the influent alkalinity and maintain near neutral pH condition over prolonged periods. The A/A digestion of mixed primary/waste-activated sludge achieved up to 43.7% reductions in volatile suspended solids, 33.7% removal of total nitrogen, and a specific ENR rate of 5.75 x 10(-2) mg NO3-N/mg VSSd. Optimum results were obtained at 10 d SRT, 30 degrees C temperature, and 50% anoxic cycle length.  相似文献   

16.
气提式内循环硝化反应器运行性能的研究   总被引:25,自引:1,他引:24  
气提式内循环反应器具有很好的生物硝化性能,能承受高进水氨浓度(78.49mmol/L),具有高容积转化效率(163.18 mmol/L·d),运行性能稳定(氨去除率保持在94.42%以上)。在气提式内循环反应器的运行过程中,可产生硝化颗粒污泥。颗粒污泥开始出现的时间约为45d,颗粒污泥的粒径平均值0.83 mm,沉降速度55.53m/h,氨氧化活性0.95mmol (NH+4-N)/g(VS)·d。硝化颗粒污泥也具有厌氧氨氧化活性,氨氧化速率0.23mmol (NH+4-N)/g(VS)·d,亚硝酸还原速率0.24mmol (NO-2-N)/g(VS)·d。  相似文献   

17.
Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor.  相似文献   

18.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation reactor in a pilot-scale sequencing batch reactor (SBR). Soy protein wastewater was used as an external carbon source for altering the influent chemical oxygen demand/nitrogen (COD/N) ratios of SBR. Initially, the phenomenon of partial nitrification was observed and depressed by increasing the influent COD/N ratios from 3.32 to 7.24 mg/mg. After 90 days of aerobic granulation, the mixed liquor suspended solids concentration of the reactor increased from 2.80 to 7.02 g/L, while the sludge volumetric index decreased from 105.51 to 42.99 mL/g. The diameters of mature aerobic granules vary in the range of 1.2 to 2.0 mm. The reactor showed excellent removal performances for COD and $ {\text{NH}}_4^{ + }{\text{ - N}} $ after aerobic granulation, and average removal efficiencies were over 93% and 98%, respectively. The result of this study could provide further information on the development of aerobic granule-based system for full-scale applications.  相似文献   

19.
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9–22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.  相似文献   

20.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号