首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

2.
Cytochrome P450 reductase (CPR) is the redox partner of P450 monooxygenases, involved in primary and secondary metabolism of eukaryotes. Two novel CPR genes, sharing 34% amino acid identity, were found in the filamentous ascomycete Cochliobolus lunatus. Fungal genomes were searched for putative CPR enzymes. Phylogenetic analysis suggests that multiple independent CPR duplication events occurred in fungi, whereas P450-CPR fusion occurred before the diversification of Dikarya and Zygomycota. Additionally, losses of methionine synthase reductase were found in certain fungal taxa; a truncated form of this enzyme was conserved in Pezizomycotina. In fungi, high numbers of cytochrome P450 enzymes, multiple CPRs, and P450-CPR fusion proteins were associated with filamentous growth. Evolution of multiple CPR-like oxidoreductases in filamentous fungi might have been driven by the complexity of biochemical functions necessitated by their growth form, as opposed to yeast.  相似文献   

3.
Penicillins and cephalosporins belong chemically to the group of beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Emericella nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g. Lysobacter lactamdurans (cephabacins) and Streptomyces clavuligerus (cephamycin C), respectively. For a long time the evolutionary origin of beta-lactam biosynthesis genes in fungi has been discussed. As often, there are arguments for both hypotheses, i.e., horizontal gene transfer from bacteria to fungi versus vertical descent. There were strong arguments in favour of horizontal gene transfer, e.g., fungal genes were clustered or some genes lack introns. The recent identification and characterisation of cis-/trans-elements involved in the regulation of the beta-lactam biosynthesis genes has provided new arguments in favour of horizontal gene transfer. In contrast to the bacterium S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators which were recruited to also regulate the beta-lactam biosynthesis genes. Moreover, the fungal regulatory genes are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Alternatively, it is conceivable that only a part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, e.g., the acvA and ipnA gene without a regulatory gene.  相似文献   

4.
5.
6.
We have shown that many fungi (eukaryotes) exhibit distinct denitrifying activities, although occurrence of denitrification was previously thought to be restricted to bacteria (prokaryotes), and have characterized the fungal denitrification system. It comprises NirK (copper-containing nitrite reductase) and P450nor (a cytochrome P450 nitric oxide (NO) reductase (Nor)) to reduce nitrite to nitrous oxide (N(2)O). The system is localized in mitochondria functioning during anaerobic respiration. Some fungal systems further contain and use dissimilatory and assimilatory nitrate reductases to denitrify nitrate. Phylogenetic analysis of nirK genes showed that the fungal-denitrifying system has the same ancestor as the bacterial counterpart and suggested a possibility of its proto-mitochondrial origin. By contrast, fungi that have acquired a P450 from bacteria by horizontal transfer of the gene, modulated its function to give a Nor activity replacing the original Nor with P450nor. P450nor receives electrons directly from nicotinamide adenine dinucleotide to reduce NO to N(2)O. The mechanism of this unprecedented electron transfer has been extensively studied and thoroughly elucidated. Fungal denitrification is often accompanied by a unique phenomenon, co-denitrification, in which a hybrid N(2) or N(2)O species is formed upon the combination of nitrogen atoms of nitrite with a nitrogen donor (amines and imines). Possible involvement of NirK and P450nor is suggested.  相似文献   

7.
8.
Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution to the biogeochemical nitrogen cycle tools for monitoring the presence and expression of fungal assimilatory nitrate reductase genes were developed. To the ∼100 currently available fungal full-length gene sequences, another 109 partial sequences were added by amplification from individual culture isolates, representing all major orders occurring in agricultural soils. The extended database led to the discovery of new horizontal gene transfer events within the fungal kingdom. The newly developed PCR primers were used to study gene pools and gene expression of fungal nitrate reductases in agricultural soils. The availability of the extended database allowed affiliation of many sequences to known species, genera or families. Energy supply by a carbon source seems to be the major regulator of nitrate reductase gene expression for fungi in agricultural soils, which is in good agreement with the high energy demand of complete reduction of nitrate to ammonium.  相似文献   

9.

Background  

Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters.  相似文献   

10.
11.
12.
13.
A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO(2) conditions.  相似文献   

14.
15.
Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either enzyme is not due to inactivation of the cyanobacterial nitrogen control protein NtcA. A few other naturally occurring cyanobacterial strains are also nitrate assimilation deficient, and phylogenetic analyses indicated that the ability to utilize nitrate has been independently lost at least four times during the evolutionary history of the cyanobacteria. This phenotype is associated with the presence of environmental ammonium, a negative regulator of nitrate assimilation gene expression, which may indicate that natural selection to maintain functional copies of nitrate assimilation genes has been relaxed in these habitats. These results suggest how the evolutionary fates of conditionally expressed genes might differ between environments and thereby effect ecological divergence and biogeographical structure in the microbial world.  相似文献   

16.
Gene duplication represents an evolutionary mechanism for expanding metabolic potential. Here we analysed the evolutionary relatedness of isocitrate and methylisocitrate lyases, which are key enzymes of the glyoxylate and methylcitrate cycle respectively. Phylogenetic analyses imply that ancient eukaryotes acquired an isocitrate lyase gene from a prokaryotic source, but it was lost in some eukaryotic lineages. However, protists, oomycetes and most fungi maintained this gene and successfully integrated the corresponding enzyme into the glyoxylate cycle. A second gene, encoding a highly related enzyme, is present in fungi, but absent from other eukaryotes. This methylisocitrate lyase is specifically involved in propionyl-CoA degradation via the methylcitrate cycle. Although bacteria possess methylisocitrate lyases with a structural fold similar to that of isocitrate lyases, their sequence identity to fungal methylisocitrate lyases is low. Phylogenetic analyses imply that fungal methylisocitrate lyases arose from gene duplication of an ancient isocitrate lyase gene from the basidiomycete lineage. Mutagenesis of active-site residues of a bacterial and fungal isocitrate lyase, which have been predicted to direct the substrate specificity of iso- and methylisocitrate lyases, experimentally confirmed the possibility of direct evolution of methylisocitrate lyases from isocitrate lyases. Thus, gene duplication has increased the metabolic capacity of fungi.  相似文献   

17.
Bacillus megaterium NCT-2 is a novel bacterium that can utilize nitrate as its only nitrogen source for growth. The nitrate assimilation related genes that are involved in this process would be expected to be crucial. However, little is known about the genomic background of this bacterium, let alone the sequences of the nitrate assimilation related genes. In order to further investigate the nitrate assimilation function of the NCT-2, genome sequencing was performed. After obtaining the fine map of the NCT-2 genome, which was submitted to the NCBI GenBank (AHTF00000000), the sequences of the nitrate assimilation related genes (the nitrate reductase electron transfer subunit nasB and the nitrate reductase catalytic subunit nasC, the nitrite reductase [NAD(P)H] large subunit nasD and the nitrite reductase [NAD(P)H] small subunit nasE, and the glutamine synthetase glnA) were identified. Multiple alignments were performed to find out the sequence identities of the nitrate assimilation related genes to that of their similar species. Through KEGG signaling mapping search, the nitrate assimilation related genes were revealed to be located in the nitrogen metabolism signaling pathway. The putative 3D protein structures of these genes were modeled by SWISS MODEL, and shown to be highly similar to the nitrate assimilation related genes in the PDB database. Finally, the sequence validity of the nitrate assimilation related genes was verified by PCR with specifically designed primers.  相似文献   

18.
We purified the nitrate reductase from the soluble fraction of Magnetospirillum magnetotacticum MS-1. The enzyme was composed of 86- and 17-kDa subunits and contained molybdenum, non-heme iron, and heme c. These properties are very similar to those of the periplasmic nitrate reductase found in Paracoccus pantotrophus. The M. magnetotacticum nap locus was clustered in seven open reading frames, napFDAGHBC. The phylogenetic analyses of NapA, NapB, and NapC suggested a close relationship between M. magnetotacticum nap genes and Escherichia coli nap genes, which is not consistent with the 16S rDNA data. This is the first finding that the alpha subclass of Proteobacteria possesses a napFDAGHBC-type nap gene cluster. The nap gene cluster had putative fumarate and nitrate reduction regulatory protein (Fnr) and NarL protein binding sites. Furthermore, we investigated the effect of molybdate deficiency in medium on the total iron content of the magnetosome fraction and discussed the physiological function of nitrate reductase in relation to the magnetite synthesis in M. magnetotacticum.  相似文献   

19.
The motile cells of chytrids were once believed to be relics from the time before the colonization of land by fungi. However, the majority of chytrids had not been found in marine but freshwater environments. We investigated fungal diversity by a fungal-specific PCR-based analysis of environmental DNA in deep-sea methane cold-seep sediments, identifying a total of 35 phylotypes, 12 of which were early diverging fungi (basal fungi, ex 'lower fungi'). The basal fungi occupied a major portion of fungal clones. These were phylogenetically placed into a deep-branching clade of fungi and the LKM11 clade that was a divergent group comprised of only environmental clones from aquatic environments. As suggested by Lara and colleagues, species of the endoparasitic genus Rozella, being recently considered of the earliest branching taxa of fungi, were nested within the LKM11 clade. In the remaining 23 phylotypes identified as the Dikarya, the majority of which were similar to those which appeared in previously deep-sea studies, but also highly novel lineages associated with Soil Clone Group I (SCGI), Entorrhiza sp. and the agaricomycetous fungi were recorded. The fungi of the Dikarya may play a role in the biodegradation of lignin and lignin-derived materials in deep-sea, because the characterized fungal species related to the frequent phylotypes within the Dikarya have been reported to possess an ability to degrade lignin.  相似文献   

20.
Seven known genes control Pseudomonas aeruginosa nitrate assimilation. Three of the genes, designated nas, are required for the synthesis of assimilatory nitrate reductase: nasC encodes a structural component of the enzyme; nasA and nasB encode products that participate in the biosynthesis of the molybdenum cofactor of the enzyme. A fourth gene (nis) is required for the synthesis of assimilatory nitrite reductase. The remaining three genes (ntmA, ntmB, and ntmC) control the assimilation of a number of nitrogen sources. The nas genes and two ntm genes have been located on the chromosome and are well separated from the known nar genes which encode synthesis of dissimilatory nitrate reductase. Our data support the previous conclusion that P. aeruginosa has two distinct nitrate reductase systems, one for the assimilation of nitrate and one for its dissimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号