首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C (PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.  相似文献   

2.
Gbetagamma subunits are known to bind to and activate G-protein-activated inwardly rectifying K(+) channels (GIRK) by regulating their open probability and bursting behavior. Studying G-protein regulation of either native GIRK (I(KACh)) channels in feline atrial myocytes or heterologously expressed GIRK1/4 channels in Chinese hamster ovary cells and HEK 293 cells uncovered a novel Gbetagamma subunit mediated regulation of the inwardly rectifying properties of these channels. I(KACh) activated by submaximal concentrations of acetylcholine exhibited a approximately 2.5-fold stronger inward rectification than I(KACh) activated by saturating concentrations of acetylcholine. Similarly, the inward rectification of currents through GIRK1/4 channels expressed in HEK cells was substantially weakened upon maximal stimulation with co-expressed Gbetagamma subunits. Analysis of the outward current block underlying inward rectification demonstrated that the fraction of instantaneously blocked channels was reduced when Gbetagamma was over-expressed. The Gbetagamma induced weakening of inward rectification was associated with reduced potencies for Ba(2+) and Cs(+) to block channels from the extracellular side. Based on these results we propose that saturation of the channel with Gbetagamma leads to a conformational change within the pore of the channel that reduced the potency of extracellular cations to block the pore and increased the fraction of channels inert to a pore block in outward direction.  相似文献   

3.
Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm.  相似文献   

4.
G protein-activated K+ channels (Kir3 or GIRK) are activated by direct binding of Gbetagamma. The binding sites of Gbetagamma in the ubiquitous GIRK1 (Kir3.1) subunit have not been unequivocally charted, and in the neuronal GIRK2 (Kir3.2) subunit the binding of Gbetagamma has not been studied. We verified and extended the map of Gbetagamma-binding sites in GIRK1 by using two approaches: direct binding of Gbetagamma to fragments of GIRK subunits (pull down), and competition of these fragments with the Galphai1 subunit for binding to Gbetagamma. We also mapped the Gbetagamma-binding sites in GIRK2. In both subunits, the N terminus binds Gbetagamma. In the C terminus, the Gbetagamma-binding sites in the two subunits are not identical; GIRK1, but not GIRK2, has a previously unrecognized Gbetagamma-interacting segments in the first half of the C terminus. The main C-terminal Gbetagamma-binding segment found in both subunits is located approximately between amino acids 320 and 409 (by GIRK1 count). Mutation of C-terminal leucines 262 or 333 in GIRK1, recognized previously as crucial for Gbetagamma regulation of the channel, and of the corresponding leucines 273 and 344 in GIRK2 dramatically altered the properties of K+ currents via GIRK1/GIRK2 channels expressed in Xenopus oocytes but did not appreciably reduce the binding of Gbetagamma to the corresponding fusion proteins, indicating that these residues are mainly important for the regulation of Gbetagamma-induced changes in channel gating rather than Gbetagamma binding.  相似文献   

5.
Activation of heterotrimeric GTP-binding (G) proteins by their coupled receptors, causes dissociation of the G protein alpha and betagamma subunits. Gbetagamma subunits interact directly with G protein-gated inwardly rectifying K+ (GIRK) channels to stimulate their activity. In addition, free Gbetagamma subunits, resulting from agonist-independent dissociation of G protein subunits, can account for a major component of the basal channel activity. Using a series of chimeric constructs between GIRK4 and a Gbetagamma-insensitive K+ channel, IRK1, we have identified a critical site of interaction of GIRK with Gbetagamma. Mutation of Leu339 to Glu within this site impaired agonist-induced sensitivity and decreased binding to Gbetagamma, without removing the Gbetagamma contribution to basal currents. Mutation of the corresponding residue in GIRK1 (Leu333) resulted in a similar phenotype. Both the GIRK1 and GIRK4 subunits contributed equally to the agonist-induced sensitivity of the heteromultimeric channel. Thus, we have identified a channel site that interacts specifically with Gbetagamma subunits released through receptor stimulation.  相似文献   

6.
G-protein-coupled inwardly rectifying K(+) (GIRK; Kir3.x) channels are the primary effectors of numerous G-protein-coupled receptors. GIRK channels decrease cellular excitability by hyperpolarizing the membrane potential in cardiac cells, neurons, and secretory cells. Although direct regulation of GIRKs by the heterotrimeric G-protein subunit Gbetagamma has been extensively studied, little is known about the number of Gbetagamma binding sites per channel. Here we demonstrate that purified GIRK (Kir 3.x) tetramers can be chemically cross-linked to exogenously purified Gbetagamma subunits. The observed laddering pattern of Gbetagamma attachment to GIRK4 homotetramers was consistent with the binding of one, two, three, or four Gbetagamma molecules per channel tetramer. The fraction of channels chemically cross-linked to four Gbetagamma molecules increased with increasing Gbetagamma concentrations and approached saturation. These results suggest that GIRK tetrameric channels have four Gbetagamma binding sites. Thus, GIRK (Kir 3.x) channels, like the distantly related cyclic nucleotide-gated channels, are tetramers and exhibit a 1:1 subunit/ligand binding stoichiometry.  相似文献   

7.
K+ channels composed of GIRK subunits are predominantly expressed in the heart and various regions of the brain. They are activated by betagamma-subunits released from pertussis toxin-sensitive G-proteins coupled to different seven-helix receptors. In rat atrial myocytes, activation of K(ACh) channels is strictly limited to receptors coupled to pertussis toxin-sensitive G-proteins. Upon treatment of myocytes with antisense oligodesoxynucleotides against GRK2, a receptor kinase with Gbetagamma binding sites, in a fraction of cells, K(ACh) channels can be activated by beta-adrenergic receptors. Sensitivity to beta-agonist is insensitive to pertussis toxin treatment. These findings demonstrate a potential role of Gbetagamma binding proteins for target selectivity of G-protein-coupled receptors.  相似文献   

8.
Cardiac and neuronal G protein-activated K+ channels (GIRK; Kir3) open following the binding of Gbetagamma subunits, released from Gi/o proteins activated by neurotransmitters. GIRKs also possess basal activity contributing to the resting potential in neurons. It appears to depend largely on free Gbetagamma, but a Gbetagamma-independent component has also been envisaged. We investigated Gbetagamma dependence of the basal GIRK activity (A(GIRK,basal)) quantitatively, by titrated expression of Gbetagamma scavengers, in Xenopus oocytes expressing GIRK1/2 channels and muscarinic m2 receptors. The widely used Gbetagamma scavenger, myristoylated C terminus of beta-adrenergic kinase (m-cbetaARK), reduced A(GIRK,basal) by 70-80% and eliminated the acetylcholine-evoked current (I(ACh)). However, we found that m-cbetaARK directly binds to GIRK, complicating the interpretation of physiological data. Among several newly constructed Gbetagamma scavengers, phosducin with an added myristoylation signal (m-phosducin) was most efficient in reducing GIRK currents. m-phosducin relocated to the membrane fraction and did not bind GIRK. Titrated expression of m-phosducin caused a reduction of A(GIRK,basal) by up to 90%. Expression of GIRK was accompanied by an increase in the level of Gbetagamma and Galpha in the plasma membrane, supporting the existence of preformed complexes of GIRK with G protein subunits. Increased expression of Gbetagamma and its constitutive association with GIRK may underlie the excessively high A(GIRK,basal) observed at high expression levels of GIRK. Only 10-15% of A(GIRK,basal) persisted upon expression of both m-phosducin and cbetaARK. These results demonstrate that a major part of Ibasal is Gbetagamma-dependent at all levels of channel expression, and only a small fraction (<10%) may be Gbetagamma-independent.  相似文献   

9.
Activation of the heteromeric G protein-gated inwardly rectifying K(+) channel (GIRK) GIRK1 and GIRK4 subunits gives rise to I(KACh), which controls excitability in atrial tissue. Although homomeric GIRK4 channels localize to the plasma membrane and display moderate function, GIRK1 channels fail to localize to the cell surface and do not exhibit significant function as homomers. Using oocytes to express GFP-tagged GIRK1 and GIRK4 and chimeras between these two proteins, we have identified two regions, one in the proximal C terminus and another in the distal N terminus that are critical for their subcellular localization. Replacement of both of these regions in GIRK1 with corresponding regions from GIRK4 was required for efficient expression of GIRK1 on the plasma membrane. Replacement of either region by itself was ineffective. The distal N terminus and proximal C terminus have been previously suggested to play important roles in ER-export and subunit co-assembly respectively in this family of channels. Our data indicate for the first time that both of these regions need to work in concert to mediate efficient targeting of these channels to the plasma membrane.  相似文献   

10.
G protein-coupled inwardly rectifying K(+) channels (GIRK or Kir3) form functional heterotetramers gated by Gbetagamma subunits. GIRK channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK5 (Kir3.5) is the oocyte homologue of the mammalian GIRK subunits that conform the K(ACh) channel. It has been claimed that even when the oocytes express GIRK5 proteins they do not form functional channels. However, the GIRK5 gene shows three initiation sites that suggest the existence of three isoforms. In a previous work we demonstrated the functionality of homomultimers of the shortest isoform overexpressed in the own oocytes. Remarkably, the basal GIRK5-Delta25 inward currents were not coupled to the activation of a G-protein receptor in the oocytes. These results encouraged us to study this channel in another expression system. In this work we show that Sf21 insect cells can be successfully transfected with this channel. GIRK5-Delta25 homomultimers produce time-dependent inward currents only with GTPgammaS in the recording pipette. Therefore, alternative modes of stimulus input to heterotrimeric G-proteins should be present in the oocytes to account for these results.  相似文献   

11.
Sadja R  Smadja K  Alagem N  Reuveny E 《Neuron》2001,29(3):669-680
G protein-coupled inwardly rectifying potassium channels, GIRK/Kir3.x, are gated by the Gbetagamma subunits of the G protein. The molecular mechanism of gating was investigated by employing a novel yeast-based random mutagenesis approach that selected for channel mutants that are active in the absence of Gbetagamma. Mutations in TM2 were found that mimicked the Gbetagamma-activated state. The activity of these channel mutants was independent of receptor stimulation and of the availability of heterologously expressed Gbetagamma subunits but depended on PtdIns(4,5)P(2). The results suggest that the TM2 region plays a key role in channel gating following Gbetagamma binding in a phospholipid-dependent manner. This mechanism of gating in inwardly rectifying K+ channels may be similar to the involvement of the homologous region in prokaryotic KcsA potassium channel and, thus, suggests evolutionary conservation of the gating structure.  相似文献   

12.
G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a long carboxyl-terminal tail. Early studies suggested that GIRK1 was an integral component of native GIRK channels. However, more recent data indicate that native channels can be either homo- or heterotetrameric complexes composed of several GIRK subunit combinations. The functional implications of subunit composition are poorly understood at present. The purpose of this study was to examine the functional and biochemical properties of GIRK channels formed by the co-assembly of GIRK2 and GIRK3, the most abundant GIRK subunits found in the mammalian brain. To examine the properties of a channel composed of these two subunits, we co-transfected GIRK2 and GIRK3 in CHO-K1 cells and assayed the cells for channel activity by patch clamp. The most significant difference between the putative GIRK2/GIRK3 heteromultimeric channel and GIRK1/GIRKx channels at the single channel level was an approximately 5-fold lower sensitivity to activation by Gbetagamma. Complexes containing only GIRK2 and GIRK3 could be immunoprecipitated from transfected cells and could be purified from native brain tissue. These data indicate that functional GIRK channels composed of GIRK2 and GIRK3 subunits exist in brain.  相似文献   

13.
G protein-gated inwardly rectifying K+ channels (GIRKs) are activated by a direct interaction with Gbetagamma subunits and also by raised internal [Na+]. Both processes require the presence of phosphatidylinositol bisphosphate (PIP2). Here we show that the proximal C-terminal region of GIRK2 mediates the Na+-dependent activation of both the GIRK2 homomeric channels and the GIRK1/GIRK2 heteromeric channels. Within this region, GIRK2 has an aspartate at position 226, whereas GIRK1 has an asparagine at the equivalent position (217). A single point mutation, D226N, in GIRK2, abolished the Na+-dependent activation of both the homomeric and heteromeric channels. Neutralizing a nearby negative charge, E234S had no effect. The reverse mutation in GIRK1, N217D, was sufficient to restore Na+-dependent activation to the GIRK1N217D/GIRK2D226N heteromeric channels. The D226N mutation did not alter either the single channel properties or the ability of these channels to be activated via the m2-muscarinic receptor. PIP2 dramatically increased the open probability of GIRK1/GIRK2 channels in the absence of Na+ or Gbetagamma but did not preclude further activation by Na+, suggesting that Na+ is not acting simply to promote PIP2 binding to GIRKs. We conclude that aspartate 226 in GIRK2 plays a crucial role in Na+-dependent gating of GIRK1/GIRK2 channels.  相似文献   

14.
The betagamma subunits of G proteins modulate inwardly rectifying potassium (GIRK) channels through direct interactions. Although GIRK currents are stimulated by mammalian Gbetagamma subunits, we show that they were inhibited by the yeast Gbetagamma (Ste4/Ste18) subunits. A chimera between the yeast and the mammalian Gbeta1 subunits (ymbeta) stimulated or inhibited GIRK currents, depending on whether it was co-expressed with mammalian or yeast Ggamma subunits, respectively. This result underscores the critical functional influence of the Ggamma subunits on the effectiveness of the Gbetagamma complex. A series of chimeras between Ggamma2 and the yeast Ggamma revealed that the C-terminal half of the Ggamma2 subunit is required for channel activation by the Gbetagamma complex. Point mutations of Ggamma2 to the corresponding yeast Ggamma residues identified several amino acids that reduced significantly the ability of Gbetagamma to stimulate channel activity, an effect that was not due to improper association with Gbeta. Most of the identified critical Ggamma residues clustered together, forming an intricate network of interactions with the Gbeta subunit, defining an interaction surface of the Gbetagamma complex with GIRK channels. These results show for the first time a functional role for Ggamma in the effector role of Gbetagamma.  相似文献   

15.
Neuronal G protein-coupled inwardly-rectifying potassium channels (GIRKs, Kir3.x) can be activated or inhibited by distinct classes of receptors (Galphai/o and Galphaq/11-coupled, respectively), providing dynamic regulation of neuronal excitability. In this mini-review, we highlight findings from our laboratory in which we used a mammalian heterologous expression system to address mechanisms of GIRK channel regulation by Galpha and Gbetagamma subunits. We found that, like beta1- and beta2-containing Gbetagamma dimers, GIRK channels are also activated by G protein betagamma dimers containing beta3 and beta4 subunits. By contrast, GIRK currents are inhibited by beta5-containing Gbetagamma dimers and/or by Galpha proteins of the Galphaq/11 family. The properties of Gbeta5-mediated inhibition suggest that beta5-containing Gbetagamma dimers act as competitive antagonists of other activating Gbetagamma pairs on GIRK channels. Inhibition of GIRK channels by Galpha subunits is specific to members of the Galphaq/11 family and appears to result, at least in part, from activation of phospholipase C (PLC) and the resultant decrease in membrane levels of phosphatidylinositol-4,5-bisphosphate (PIP2), an endogenous co-factor necessary for GIRK channel activity; this Galphaq/11 activated mechanism is largely responsible for receptor-mediated GIRK channel inhibition.  相似文献   

16.
The G protein-coupled inwardly rectifying K+ channel, GIRK1/GIRK4, can be activated by receptors coupled to the Galpha(i) subunit. An opposing role for Galpha(q) receptor signaling in GIRK regulation has only recently begun to be established. We have studied the effects of m1 muscarinic acetylcholine receptor (mAChR) stimulation, which is known to mobilize calcium and activate protein kinase C (PKC) by a Galpha(q)-dependent mechanism, on whole cell GIRK1/4 currents in Xenopus oocytes. We found that stimulation of the m1 mAChR suppresses both basal and dopamine 2 receptor-activated GIRK 1/4 currents. Overexpression of Gbetagamma subunits attenuates this effect, suggesting that increased binding of Gbetagamma to the GIRK channel can effectively compete with the G(q)-mediated inhibitory signal. This G(q) signal requires the use of second messenger molecules; pharmacology implicates a role for PKC and Ca2+ responses as m1 mAChR-mediated inhibition of GIRK channels is mimicked by PMA and Ca2+ ionophore. We have analyzed a series of mutant and chimeric channels suggesting that the GIRK4 subunit is capable of responding to G(q) signals and that the resulting current inhibition does not occur via phosphorylation of a canonical PKC site on the channel itself.  相似文献   

17.
Gprotein-activated inwardly rectifying K+ channel (GIRK or Kir3) currents are inhibited by mechanical stretch of the cell membrane, but the underlying mechanisms are not understood. In Xenopus oocytes heterologously expressing GIRK channels, membrane stretch induced by 50% reduction of osmotic pressure caused a prompt reduction of GIRK1/4, GIRK1, and GIRK4 currents by 16.6-42.6%. Comparable GIRK current reduction was produced by protein kinase C (PKC) activation (phorbol 12-myristate 13-acetate). The mechanosensitivity of the GIRK4 current was abolished by pretreatment with PKC inhibitors (staurosporine or calphostin C). Neither hypo-osmotic challenge nor PKC activation affected IRK1 currents. GIRK4 chimera (GIRK4-IRK1-(Lys207-Leu245)) and single point mutant (GIRK4(I229L)), in which the phosphatidylinositol 4,5-bisphosphate (PIP2) binding domain or residue was replaced by the corresponding region of IRK1 to strengthen the channel-PIP2 interaction, showed no mechanosensitivity and minimal PKC sensitivity. IRK1 gained mechanosensitivity and PKC sensitivity by reverse double point mutation of the PIP2 binding domain (L222I/R213Q). Overexpression of Gbetagamma, which is known to strengthen the channel-PIP2 interaction, attenuated the mechanosensitivity of GIRK4 channels. In oocytes expressing a pleckstrin homology domain of PLC-delta tagged with green fluorescent protein, hypo-osmotic challenge or PKC activation caused a translocation of the fluorescence signal from the cell membrane to the cytosol, reflecting PIP2 hydrolysis. The translocation was prevented by pretreatment with PKC inhibitors. Involvement of PKC activation in the mechanosensitivity of muscarinic K+ channels was confirmed in native rabbit atrial myocytes. These results suggest that the mechanosensitivity of GIRK channels is mediated primarily by channel-PIP2 interaction, with PKC playing an important role in modulating the interaction probably through PIP2 hydrolysis.  相似文献   

18.
G proteins interact with effectors at multiple sites and regulate their activity. The functional significance of multiple contact points is not well understood. We previously identified three residues on distinct surfaces of Gbetagamma that are crucial for G protein-coupled inward rectifier K(+) (GIRK) channel activation. Here we show that mutations at these sites, S67K, S98T, and T128F, abolished or reduced direct GIRK current activation in inside-out patches, but, surprisingly, all mutants synergized with sodium in activating K(+) currents. Each of the three Gbeta(1) mutants bound the channel indicating that the defects reflected mainly functional impairments. We tested these mutants for functional interactions with effectors other than K(+) channels. With N-type calcium channels, Gbetagamma wild type and mutants all inhibited basal currents. A depolarizing pre-pulse relieved Gbetagamma inhibition of Ca(2+) currents by the wild type and the S98T and T128F mutants but not the S67K mutant. Both wild type and mutant Gbetagamma subunits activated phospholipase C beta(2) with similar potencies; however, the S67K mutant showed reduced maximal activity. These data establish a pattern where mutations can alter the Gbetagamma regulation of a specific effector function without affecting other Gbetagamma-mediated functions. Moreover, Ser-67 showed this pattern in all three effectors tested, suggesting that this residue participates in a common functional domain on Gbeta(1) that regulates several effectors. These data show that distinct domains within Gbetagamma subserve specific functional roles.  相似文献   

19.
An apparent ion channel with a conductance of 295 pS is present in isolated inside-out patches of outer tegumental membrane taken from female Schistosoma mansoni. With positive voltages applied to the intracellular face of the patch, percentage open time for the channel was 0 to 50; with negative voltages applied, percentage open time was greater than 99. Step changes in applied voltage characteristically induced opening-closing activity. However, there was no maintained applied voltage at which there was a high level of sustained opening-closing activity. The 295 pS conductance was by far the most commonly occurring conductance but it appears to result from cooperativity among several channels, the unitary conductance for the channel averaging 95 pS. Alterations in the Na+ or K+ concentration ratios changed the reversal potential for this conductance but alterations in the Cl- concentration did not. From this it is concluded that this channel is selective for Na+ or K+ over Cl- and it appears to be a nonselective cation channel.  相似文献   

20.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号