首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75NTR), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75NTR and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75NTR and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75NTR/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75NTR or TrkA. Interestingly, immunoreactivity to anti-p75NTR antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75NTR, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75NTR is turned on.  相似文献   

2.
Neurotrophins play an essential role in sensory development by providing trophic support to neurons that innervate peripheral targets. Nerve growth factor (NGF), neurotrophin-3, neurotrophin-4, and brain-derived neurotrophin exert their survival effect by binding to two transmembrane receptor types: trk receptors, which exhibit binding specificity, and the p75NTR receptor, which binds all neurotrophins. To determine how target-derived neurotrophins affect sensory neuron development and function, we used transgenic mice that overexpress NGF in the skin to examine the impact of NGF overexpression on receptor expression. Previous studies of trk expression in trigeminal ganglia of adult NGF transgenics showed that the percentage of trkA neurons doubled and their number increased fivefold. The present study focused on the p75 receptor and shows that the percentage of neurons expressing p75NTR also increase in NGF ganglia, but only by 10%. This increase did not encompass the small, BS-IB-4 isolectin-positive cells as they remained p75 negative in transgenic ganglia. Interestingly, levels of trkA protein were not increased on a per-cell level, whereas levels of p75NTR increased nearly threefold. These results show that in sensory systems, target-derived NGF modulates the level of p75NTR receptor expression, and in so doing, may act to regulate the formation of functional receptor complexes and subsequent trophic action. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 258–270, 1998  相似文献   

3.
Regeneration of muscle fibers, lost during pathological muscle degeneration or after injuries, is mediated by the production of new myofibres. This process, sustained by the resident stem cells of the muscle, the satellite cells, is finely regulated by local cues, in particular by cytokines and growth factors. Evidence in the literature suggests that nerve growth factor (NGF) is involved in muscle fiber regeneration; however, its role and mechanism of action were unclear. We have investigated this issue in in vivo mouse models of muscle regeneration and in primary myogenic cells. Our results demonstrate that NGF acts through its low-affinity receptor p75NTR in a developmentally regulated signaling pathway necessary to myogenic differentiation and muscle repair in vivo. We also demonstrate that this action of NGF is mediated by the down-regulation of RhoA-GTP signaling in myogenic cells.  相似文献   

4.
5.
The functions of nerve growth factor (NGF) in skeletal muscles physiology and pathology are not clear and call for an updated investigation. To achieve this goal we sought to investigate NGF-induced ERK1/2 phosphorylation and its role in the C2C12 skeletal muscle myoblasts and myotubes. RT-PCR and western blotting experiments demonstrated expression of p75NTR, α9β1 integrin, and its regulator ADAM12, but not trkA in the cells, as also found in gastrocnemius and quadriceps mice muscles. Both proNGF and βNGF induced ERK1/2 phosphorylation, a process blocked by (a) the specific MEK inhibitor, PD98059; (b) VLO5, a MLD-disintegrin with relative selectivity towards α9β1 integrin; and (c) p75NTR antagonists Thx-B and LM-24, but not the inactive control molecule backbone Thx. Upon treatment for 4 days with either anti-NGF antibody or VLO5 or Thx-B, the proliferation of myoblasts was decreased by 60–70%, 85–90% and 60–80% respectively, indicative of trophic effect of NGF which was autocrinically released by the cells. Exposure of myotubes to ischemic insult in the presence of βNGF, added either 1 h before oxygen-glucose-deprivation or concomitant with reoxygenation insults, resulted with about 20% and 33% myoprotection, an effect antagonized by VLO5 and Thx-B, further supporting the trophic role of NGF in C2C12 cells. Cumulatively, the present findings propose that proNGF and βNGF-induced ERK1/2 phosphorylation in C2C12 cells by functional cooperation between p75NTR and α9β1 integrin, which are involved in myoprotective effects of autocrine released NGF. Furthermore, the present study establishes an important trophic role of α9β1 in NGF-induced signaling in skeletal muscle model, resembling the role of trkA in neurons. Future molecular characterization of the interactions between NGF receptors in the skeletal muscle will contribute to the understanding of NGF mechanism of action and may provide novel therapeutic targets.  相似文献   

6.
Neurotrophins are expressed in muscle cells both during development and postnatally. Furthermore, during development muscle cells express high levels of the common p75 neurotrophin receptor, which binds all neurotrophins. Only fragmentary and controversial data are available regarding the responsiveness of muscle cells to neurotrophins and the importance of low-affinity p75 receptor in muscle development. The present study investigates in vitro the immunocytochemical expression of p75 in a rat myogenic cell line (L6) at various time points and in response to different coating substrates as a first step in elucidating the regulation of p75 in muscle. We found that in L6 myoblasts, p75 is expressed only at very early stages of maturation and its levels of expression are regulated by the nature of the coating substrates. p75 expression decreases in cells growing on substrates more suitable for myoblast fusion into myotubes. Time course analysis indicates a reverse correlation between myoblast fusion into myotubes and the levels of p75 expression. Myotubes were always p75 negative. Substrates not suitable for the fusion process induced a prolonged presence of p75 in myoblasts with an increase of their apoptosis. We conclude that expression of p75, at least in this in vitro condition, is regulated by the stages of myoblast differentiation and the nature of the coating substrates. According to the observed time- and substrate-related evidences, future studies should investigate in vivo both the regulation of p75 in the myoblast fusion and the effects and the importance of neurotrophins binding during myoblast differentiation.  相似文献   

7.
During muscle development, the p75(NTR) is expressed transiently on myoblasts. The temporal expression pattern of the receptor raises the possibility that the receptor is influencing muscle development. To test this hypothesis, p75(NTR)-deficient mutant mice were tested for muscle strength by using a standard wire gripe strength test and were found to have significantly decreased strength relative to that of normal mice. When normal mybolasts were examined in vivo for expression of NGF receptors, p75(NTR) was detected on myoblasts but the high affinity NGF receptor, trk A, was not co-expressed with p75(NTR). In vitro, proliferating C2C12 and primary myoblasts co-expressed the p75(NTR) and MyoD, but immunofluorescent analysis of primary myoblasts and RT-PCR analysis of C2C12 mRNA revealed that myoblasts were devoid of trk A. In contrast to the cell death functions that characterize the p75(NTR) in neurons, p75(NTR)-positive primary and C2C12 myoblasts did not differentiate or undergo apoptosis in response to neurotrophins. Rather, myoblasts survived and even proliferated when grown at subconfluent densities in the presence of the neurotrophins. Furthermore, when myoblasts treated with NGF were lysed and immunoprecipitated with antibodies against phosphorylated I-kappaB and AKT, the cells contained increased levels of both phospho-proteins, both of which promote cell survival. By contrast, neurotrophin-treated myoblasts did not induce phosphorylation of Map Kinase p42/44 or p38, indicating the survival was not mediated by the trk A receptor. Taken together, the data indicate that the p75(NTR) mediates survival of myoblasts prior to differentiation and that the activity of this receptor during myogenesis is important for developing muscle.  相似文献   

8.
Stem/progenitor cells of the human corneal epithelium are present in the human corneal limbus, and several corneal epithelial stem/progenitor cell markers have been reported. Recently, the neurotrophin family receptors were reported to be useful markers of corneal epithelial stem/progenitor cells. Therefore, we examined an enzymatic separation method for obtaining corneal epithelial stem/progenitor cells and measuring the change in the expression of low-affinity neurotrophin receptor p75 (p75NTR), a receptor belonging to the neurotrophin family. As a result, it was found that our separation method preserved cell viability. Furthermore, p75NTR was mainly observed in epithelial basal cells as were the corneal epithelial stem/progenitor markers p63 and integrin β1. p75NTR was also observed in the cultured cells, but its frequency decreased with passage. In conclusion, we propose that our culture method will enable the culture of corneal stem cells and that it is a useful tool for elucidating the molecular basis of the niche that is necessary for the maintenance of epithelial stem cells in the corneal limbus. Furthermore, we conclude that p75NTR is a useful cell marker for evaluating the characteristics of stem/progenitor cells in culture.  相似文献   

9.
Neural stem cells (NSC) undergo apoptotic cell death during development of nervous system and in adult. However, little is known about the biochemical regulation of neuroprotection by neurotrophin in these cells. In this report, we demonstrate that Staurosporine (STS) and Etoposide (ETS) induced apoptotic cell death of NSC by a mechanism requiring Caspase 3 activation, poly (ADP-ribose) polymerase and Lamin A/C cleavage. Although C17.2 cells revealed higher mRNA level of p75 neurotrophin receptor (p75NTR) compared with TrkA or TrkB receptor, neuroprotective effect of both nerve growth factor (NGF) and brain-derived growth factor (BDNF) mediated through the activation of tropomyosin receptor kinase (Trk) receptors. Moreover, both NGF and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathway. Inhibition of Trk receptor by K252a reduced PARP cleavage as well as cell viability, whereas inhibition of p75NTR did not affect the effect of neurotrophin on neurotoxic insults. Thus our studies indicate that the protective effect of NGF and BDNF in NSC against apoptotic stimuli is mediated by the PI3K/Akt and MAPK signaling pathway via Trk receptors. An erratum to this article can be found at  相似文献   

10.
11.
Previous studies have demonstrated local functions for neurotrophins in the developing and mature testis of rodents. To examine whether these signaling molecules are present and also potentially active in the human testis, we characterized immunohistochemically the expression and cellular localization of the known neurotrophins and their receptors during prenatal testicular development as well as in the adult human testis. Results obtained revealed the presence of nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3 and 4, as well as neurotrophin receptors p75NTR, TrkA, TrkB, and TrkC during testis morphogenesis. These proteins were also detectable in the adult human testis, and their local expression could be confirmed largely by immunoblot and RT-PCR analyses. Remarkably, the Leydig cells were found to represent the predominant neurotrophin/receptor expression sites within both fetal and adult human testes. Functional assays performed with a mouse tumor Leydig cell line revealed that NGF exposure increases cellular steroid production, indicating a role in differentiation processes. These findings support previously-recognized neuronal characteristics of Leydig cells, provide additional evidence for potential roles of neurotrophins during testis morphogenesis and in the mature testis, and demonstrate for the first time a neurotrophin-induced functional activity in Leydig cells.  相似文献   

12.
Nerve growth factor (NGF) was characterized over 4 decades ago, and like the other neurotrophins subsequently discovered, it is best known for its trophic role, including the prevention of programmed cell death in specific populations of neurones in the peripheral nervous system. This property can be accounted for by the activation of a tyrosine kinase receptor. NGF also regulates neuronal function, as illustrated by its role in pain and inflammation, and in synaptic plasticity. Finally, NGF recently was shown to activate the neurotrophin receptor p75 (p75NTR), a receptor with no intrinsic catalytic activity and with similarities to members of the tumor necrosis factor receptor family. During normal development, the activation of p75NTR by NGF actually kills cells in the central nervous system. One remarkable property of NGF is then that it controls cell numbers in opposite ways in the developing nervous system, a result of its unique ability to activate two different receptor types. BioEssays 20:137–145, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
Neurotrophin proteins are essential for the survival, differentiation, and maintenance of neurons in the peripheral and central nervous systems. Recent studies have shown that the unprocessed proforms of the neurotrophins are preferential high-affinity ligands for p75NTR and potent inducers of p75NTR-mediated cell death. Here, we explore differences in the selective constraints acting on the proregions of the three avian neurotrophin genes—NT-3, BDNF, and NGF—in an explicit phylogenetic context. We found a 50-fold difference in levels of constraint as estimated by d N/d S ratios, with the NGF proregion showing the lowest degree of constraint and BDNF the highest. These patterns suggest that the high conservation exhibited by the BDNF proregion results from intense functional constraints that are relaxed in NGF and somewhat relaxed in NT-3. The proregion of BDNF is likely to have a function that differentiates it from the corresponding regions of the NGF and NT-3 genes, suggesting that BDNF is the avian neurotrophin most likely to be used both in its precursor and mature forms in vivo.  相似文献   

14.
Nerve growth factor (NGF) is a member of the neurotrophins, which are important regulators of embryonic development and adult function in the vertebrate nervous systems. The signaling elicited by NGF regulates diverse activities, including survival, axon growth, and synaptic plasticity. NGF action is mediated by engagement with two structurally unrelated transmembrane receptors, p75NTR and TrkA, which are co-expressed in a variety of cells. The functional interactions of these receptors have been widely demonstrated and include complex formation, convergence of signaling pathways, and indirect interaction through adaptor proteins. Each domain of the receptors was shown to be important for the formation of TrkA and p75NTR complexes, but only the intramembrane and transmembrane domains seemed to be crucial for the creation of high-affinity binding sites. However, whether these occur through a physical association of the receptors is unclear. In the present work, we demonstrate by Förster resonance energy transfer that p75NTR and TrkA are physically associated through their intracellular (IC) domains and that this interaction occurs predominantly at the cell membrane and prior to NGF stimulation. Our data suggest that there is a pool of receptors dimerized before NGF stimulus, which could contribute to the high-affinity binding sites. We modeled the three-dimensional structure of the TrkA IC domain by homology modeling, and with this and the NMR-resolved structure of p75NTR, we modeled the heterodimerization of TrkA and p75NTR by docking methods and molecular dynamics. These models, together with the results obtained by Förster resonance energy transfer, provide structural insights into the receptors' physical association.  相似文献   

15.
P19 embryonic carcinoma cells can be differentiated into neurons that form synaptic connections and that produce a variety of neurotransmitters. Results of RT‐PCR indicate that P19 neurons express several neurotrophin receptors (p75NTR, trkB, and trkC, but not trkA) but they do not express any of the four neurotrophins. Consistent with the presence of trkB but not trkA, BDNF causes rapid phosphorylation of MAP kinases ERK1 and ERK2, but NGF does not. Neurotrophins induce translocation of NF‐κB into the nucleus. All four neurotrophins induce activation of NF‐κB in a biphasic manner. This effect is apparently mediated by p75NTR, because an inhibitor of trk receptors, K252a, does not inhibit activation of NF‐κB. Instead, K252a itself promotes activation of NF‐κB and this effect is additive with the effect of neurotrophins. Inhibition of reactive oxygen intermediates with PDTC completely abolishes basal activity of NF‐κB and strongly inhibits activation of NF‐κB by neurotrophins, indicating an important role of reactive oxygen intermediates in the pathway by which neurotrophins activate NF‐κB. NF‐κB is known to promote expression of the iNOS gene. We found that all four neurotrophins increased iNOS mRNA levels, resulting in increased accumulation of iNOS protein. In contrast, none of the neurotrophins stimulated nNOS mRNA or protein synthesis. PDTC abolishes constitutive and neurotrophin‐induced expression of iNOS mRNA and protein and abolishes constitutive expression of nNOS mRNA, suggesting that reactive oxygen intermediates promote expression of nNOS. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 191–203, 2003  相似文献   

16.
The previous data showed that caffeic acid phenethyl ester (CAPE), a component of propolis, possesses inducing cell cycle arrest and antiproliferation effect on C6 glioma cells in vitro and in vivo. In the present study, C6 glioma cells treated with CAPE resulted in morphological changes to an astrocytic phenotype and increased the expression of glial differentiation marker proteins including glial fibrillary acidic protein (GFAP) and S-100β. In addition, with scratch assay and Boyden chamber assay, CAPE exhibited inhibitory effects on the motility and invasion of C6 glioma cells. Furthermore, CAPE induced the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR), which were involved in neural cell differentiation. CAPE could also inhibit the activity of matrix metalloproteinases (MMPs) and induce the expression of RhoB, a tumor suppressor. To examine the involvement of p75NTR in the anti-invasive property of CAPE, Western blotting and Boyden Chamber assay were performed by addition of an anti-p75NTR antibody in C6 cells. The results showed that blocking p75NTR could decrease the CAPE-induced expression of RhoB and the inactivation of MMP-2, -9 as well as the anti-invasion effect in C6 glioma cells. Furthermore, CAPE suppressed IκB-α phosphorylation which was down stream of p75NTR. Finally, the effect of CAPE on metastasis by lung colonization of the tumor cell in nude mice was also evaluated. It was found that the groups of nude mice injected with CAPE-pretreated cells could decrease both lung size and weight as compared to the positive control group which did not receive CAPE treatment. In addition, histological examination of the mouse lung sections showed that the CAPE-treated group inhibited the metastasis of C6 glioma cells. These data suggest CAPE possesses antitumor progression potential.  相似文献   

17.

Background

Nerve growth factor (NGF) is a neurotrophin crucial for the development and survival of neurons. It also acts on cells of the immune system which express the NGF receptors TrkA and p75NTR and can be produced by them. However, mouse NK cells have not yet been studied in this context.

Methodology/Principal Findings

We used cell culture, flow cytometry, confocal microscopy and ELISA assays to investigate the expression of NGF receptors by NK cells and their secretion of NGF. We show that resting NK cells express TrkA and that the expression is different on NK cell subpopulations defined by the relative presence of CD27 and CD11b. Expression of TrkA is dramatically increased in IL-2-activated NK cells. The p75NTR is expressed only on a very low percentage of NK cells. Functionally, NGF moderately inhibits NK cell degranulation, but does not influence proliferation or cytokine production. NK cells do not produce NGF.

Conclusions/Significance

We demonstrate for the first time that mouse NK cells express the NGF receptor TrkA and that this expression is dynamically regulated.  相似文献   

18.
Nerve growth factor (NGF) and related neurotrophins are target‐derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF‐dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax−/− mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA‐positive, and TrkA−/− TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose‐ and age‐dependent fashion, mediated by p75NTR signaling through TrkA expressing axons. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

19.
Amyloid β (Aβ) aggregates are the primary component of senile plaques in Alzheimer disease (AD) patient’s brain. Aβ is known to bind p75 neurotrophin receptor (p75NTR) and mediates Aβ-induced neuronal death. Recently, we showed that NGF leads to p75NTR polyubiquitination, which promotes neuronal cell survival. Here, we demonstrate that Aβ stimulation impaired the p75NTR polyubiquitination. TRAF6 and p62 are required for polyubiquitination of p75NTR on NGF stimulation. Interestingly, we found that overexpression of TRAF6/p62 restored p75NTR polyubiquitination upon Aβ/NGF treatment. Aβ significantly reduced NF-κB activity by attenuating the interaction of p75NTR with IKKβ. p75NTR increased NF-κB activity by recruiting TRAF6/p62, which thereby mediated cell survival. These findings indicate that TRAF6/p62 abrogated the Aβ-mediated inhibition of p75NTR polyubiquitination and restored neuronal cell survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号