首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We used patch-clamp recording techniques to investigate the contribution of GABA to baseline membrane properties in cultured embryonic rat hippocampal neurons. Almost all of the neurons recorded with Cl-filled pipettes and clamped at negative potentials exhibited baselines that were noticeably noisy, with microscopic fluctuations superimposed on the macroscopic holding current. A gentle steam of saline applied to the neuronal surface rapidly and reversibly reduced the baseline current and fluctuations, both of which were completely eliminated by bicuculline. Fluctuation analysis showed that the variance in the baseline current signal was exponentially distributed with estimated kinetics comparable to those activated by submicromolar concentrations of exogenous GABA. The kinetics of Cl channels activated by endogenous GABA displayed a potential sensitivity comparable to those activated by exogenous GABA. Non-neuronal cells stably transfected with α1 and γ2 GABAA receptor subunits exhibited little baseline current variance when recorded with Cl-filled pipettes. Addition of micromolar GABA to the extracellular saline or to the pipette solution induced a saline- and bicuculline-sensitive baseline current signal comparable to that recorded in hippocampal neurons. Thus, both intra- and extracellular sources of GABA could contribute to the baseline properties recorded in these cultured neurons. Received: 13 January 1997/Revised: 16 April, 1988  相似文献   

2.
Effects of neurotransmitters on dendritic morphology were analyzed in cocultures of neurons and astrocytes from the neonatal rat olfactory bulb by means of immunocytochemical staining and morphometry. About 70% of the neurons were γ-aminobutyric acid (GABA)-immunoreactive on day 7 of the coculture. Morphometric analysis of neurons having no contact with other neurons revealed that incubation of the coculture with either a sodium channel blocker, tetrodotoxin, or GABAA receptor antagonists such as bicuculline or picrotoxin resulted in a decreased number of dendritic branch points as compared to neurons in control cultures, while the same treatment did not affect radial dendritic outgrowth or the number of primary dendrites. Application of a GABAB receptor antagonist, phaclofen, or an AMPA-type glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, had no detectable effect on dendritic morphology. Incubation of the coculture with a GABAA receptor agonist, muscimol, enhanced branching and reversed the inhibitory effect of tetrodotoxin. Branching was also enhanced by increasing extracellular K+. The inhibitory effect of tetrodotoxin or bicuculline and the stimulatory effect of muscimol or elevated K+ were abolished when neurons were grown on a monolayer of dead astrocytes, indicating that the morphoregulatory action of GABA requires living astrocytes to operate. Astrocytes pretreated with muscimol before the addition of neurons supported branching better than those without pretreatment. These results suggest that various aspects of dendritic growth are regulated by distinct mechanisms, and that neuron-to-astrocyte signaling mediated by GABA promotes dendritic branching. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 251–264, 1998  相似文献   

3.
4.
Motor neurones of the crayfish walking system display inhibitory responses evoked either by γ-amino butyric acid (GABA) or glutamate, possibly involving the same receptor (Pearlstein et al. 1994). In order to test if this sensibility to both GABA and glutamate was a specific property of crayfish GABA receptors, pharmacological characteristics of GABA-evoked responses in both sensory terminals from CB chordotonal organ and motor neurones of the walking system have been compared. Both receptors are GABA-gated Cl channels activated by specific GABAA (muscimol, isoguvacine), GABAB (3-aminopropyl phosphinic acid), and GABAC (cis-4-amino crotonic acid) agonists, and blocked by competitive (β-guanidino propionic acid) and non-competitive (picrotoxin) antagonists. They were insensitive to specific GABAA (bicuculline, SR-95531) and GABAB (phaclofen) antagonists. Furthermore, in both cases, nipecotic acid and the modulatory drug diazepam had no effect. However, our results demonstrate that GABA receptors of sensory terminals are different from those of motor neurones. GABA-induced desensitisation only occurred in sensory terminals. Moreover, glutamate was shown to activate GABA-gated Cl channels in motor neurones, but not in sensory terminals. Therefore, GABA is likely to be the endogenous neurotransmitter of presynaptic inhibition in sensory terminals, whereas inhibition between antagonistic motor neurones would be achieved by glutamate. Accepted: 10 July 1996  相似文献   

5.
Elevated spinal extracellular γ-aminobutyric acid (GABA) levels have been described during spinal cord stimulation (SCS)-induced analgesia in experimental chronic peripheral neuropathy. Interestingly, these increased GABA levels strongly exceeded the time frame of SCS-induced analgesia. In line with the former, pharmacologically-enhanced extracellular GABA levels by GABAB receptor agonists in combination with SCS in non-responders to SCS solely could convert these non-responders into responders. However, similar treatment with GABAA receptor agonists and SCS is known to be less efficient. Since K+ Cl cotransporter 2 (KCC2) functionality strongly determines proper GABAA receptor-mediated inhibition, both decreased numbers of GABAA receptors as well as reduced KCC2 protein expression might play a pivotal role in this loss of GABAA receptor-mediated inhibition in non-responders. Here, we explored the mechanisms underlying both changes in extracellular GABA levels and impaired GABAA receptor-mediated inhibition after 30 min of SCS in rats suffering from partial sciatic nerve ligation (PSNL). Immediately after cessation of SCS, a decreased spinal intracellular dorsal horn GABA-immunoreactivity was observed in responders when compared to non-responders or sham SCS rats. One hour later however, GABA-immunoreactivity was already increased to similar levels as those observed in non-responder or sham SCS rats. These changes did not coincide with alterations in the number of GABA-immunoreactive cells. C-Fos/GABA double-fluorescence clearly confirmed a SCS-induced activation of GABA-immunoreactive cells in responders immediately after SCS. Differences in spinal dorsal horn GABAA receptor-immunoreactivity and KCC2 protein levels were absent between all SCS groups. However, KCC2 protein levels were significantly decreased compared to sham PSNL animals. In conclusion, reduced intracellular GABA levels are only present during the time frame of SCS in responders and strongly point to a SCS-mediated on/off GABAergic release mechanism. Furthermore, a KCC2-dependent impaired GABAA receptor-mediated inhibition seems to be present both in responders and non-responders to SCS due to similar KCC2 and GABAA receptor levels.  相似文献   

6.
7.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.  相似文献   

9.
Subunit Composition and Function of GABAA Receptors of Rat Spermatozoa   总被引:1,自引:0,他引:1  
GABA triggers mammalian sperm acrosome reaction (AR). Here, evidence is presented, showing that rat spermatozoa contain GABAA receptors, composed of 5, 1 and 3 subunits. The effects of GABAA receptor agonist and antagonist on the induction of AR in rat spermatozoa were assessed using the chlortetracycline assay. Muscimol, a GABAA receptor agonist, triggered AR; whereas bicuculline, a GABAA receptor antagonist and picrotoxin, a GABAA receptor/Cl channel blocker, inhibited the ability of GABA or progesterone to induce AR. In conclusion, GABAA receptors appear to mediate the action of progesterone in inducing AR in rat spermatozoa.  相似文献   

10.
GABA-gated Cl channels were studied in the nervous system of the larval tobacco hawk moth, Manduca sexta, using electrophysiology, 36Cl uptake into membrane microsacs and immunocytochemistry. A GABA-induced increase in Cl conductance was recorded from a visually identifiable neurone (fg1) in the desheathed frontal ganglion. The response was insensitive to the vertebrate GABAA receptor antagonist, bicuculline, but was blocked by picrotoxinin. Bicuculline-insensitive, picrotoxinin-sensitive, GABA-stimulated 36Cl uptake was also detected in membrane microsacs prepared from the isolated larval M. sexta nervous system. Such receptors appear to be the major type of GABA receptor in larval nervous system membrane microsac preparations. An antibody raised against a 17 amino acid peptide, based on the predicted C-terminus of the Drosophila GABA receptor subunit (RDL), stained not only cell bodies, including that of fg1, but also the neuropile in the frontal ganglion, indicating the existence of RDL-like GABA receptor subunits in neurones of this ganglion. Thus, bicuculline-insensitive GABA-gated Cl channels are present in the larval nervous system of M. sexta.  相似文献   

11.
Release of [3H]noradrenaline from rat hippocampal synaptosomes was triggered by pulses of 25 mM K+, 5 μM veratridine or superfusion with the Ca2+ ionophore A23187. GABA with bicuculline or chlordiazepoxide depressed the release of [3H]noradrenaline evoked by depolarisation but not by the Ca2+ ionophore. 8 Br-cAMP with [Ca2+]0 0.3 mM had no effect on spontaneous or K+-evoked release of [3H]noradrenaline and completely blocked the effect of chlordiazepoxide and GABA with bicuculline. With [Ca2+]0 1 mM 8 Br-cAMP enhanced spontaneous and K+-evoked release of [3H]noradrenaline, and reversed the depression caused by GABA with bicuculline. GABA alone evoked Ca2+-dependent release of [3H]noradrenaline which was sensitive to [Cl?]0. The results suggest that the GABAA-receptor mediated release of [3H]noradrenaline is due to depolarisation resulting from increased Cl? conductance whereas the depression of depolarisation-dependent release of [3H]noradrenaline by GABAB or benzodiazepine receptors is mediated by a cAMP-dependent decrease in the voltage-dependent Ca2+ conductance.  相似文献   

12.
GABA receptor binding to mammalian neuronal membranes has been classified into at least 2 subtypes—GABAA and GABAB binding sites. In catfish brain GABAA receptor sites have previously been demonstrated. Evidence is now presented that under appropriate conditions which rule out GABAA receptor binding, [3H]GABA binds to membranes prepared from catfish brain. This binding is bicuculline-insensitive but differs enough from mammalian GABAB binding to cast some doubt on the idea that GABAB receptors exist in catfish brain. Specific binding was detected that was saturable and exhibited a dissociation constant of 4μM. (±)Baclofen, a potent inhibitor in rat brain, was a weak inhibitor, producing a maximum of 43% inhibition. This inhibitory effect could be enhanced, however, in the presence of 320 μM isoguvacine. [3H]GABA binding was unaffected by bicuculline. Thus bicuculline-insensitive GABA binding sites exist in catfish brain but they differ in a number of ways from the GABAB receptor site found in mammals. Furthermore, a third [3H]GABA binding site appears to exist that is both baclofen- and bicuculline-insensitive, yet is inhibited by high concentrations of isoguvacine, a known GABAA agonist.  相似文献   

13.
The interaction of avermectin B1a (AVM) with the γ-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclo-phosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose–dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage–dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

14.
The proliferation and differentiation of neural progenitor (NP) cells can be regulated by neurotransmitters including GABA and dopamine. The present study aimed to examine how these two neurotransmitter systems interact to affect post‐natal hippocampal NP cell proliferation in vitro. Mouse hippocampal NP cells express functional GABAA receptors, which upon activation led to an increase in intracellular calcium levels via the opening of L‐type calcium channels. Activation of these GABAA receptors also caused a significant decrease in proliferation; an effect that required the entry of calcium through L‐type calcium channels. Furthermore, while activation of D1‐like dopamine receptors had no effect on proliferation, it abrogated the suppressive effects of GABAA receptor activation on proliferation. The effects of D1‐like dopamine receptors are associated with a decrease in the ability of GABAA receptors to increase intracellular calcium levels, and a reduction in the surface expression of GABAA receptors. In this way, D1‐like dopamine receptor activation can increase the proliferation of NP cells by preventing GABAA receptor‐mediated inhibition of proliferation. These results suggest that, in conditions where NP cell proliferation is under the tonic suppression of GABA, agonists which act through D1‐like dopamine receptors may increase the proliferation of neural progenitors.  相似文献   

15.
The amino acid γ-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotrans-mitter that mediates most of its effects through fast GABA-gated Cl?-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes α, β, γ, δ, ε, and ρ, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of α, β, and γ subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular α and γ subunit variants. Little is known about the functional properties of the β, δ, and ε subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.  相似文献   

16.
Summary. In order to characterize the possible regulation of taurine release by GABAergic terminals, the effects of several agonists and antagonists of GABA receptors on the basal and K+-stimulated release of [3H]taurine were investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice using a superfusion system. Taurine release was concentration-dependently potentiated by GABA, which effect was reduced by phaclofen, saclofen and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at both ages, suggesting regulation by both GABAB and GABAC receptors. The involvement of GABAA receptors could not be excluded since the antagonist bicuculline was able to affect both basal and K+-evoked taurine release. Furthermore, several GABAB receptor effectors were able to inhibit K+-stimulated taurine release in the adults, while the GABAC receptor agonists trans-4-aminocrotonic acid (TACA) and cis-4-aminocrotonic acid (CACA) potentiated this release. The potentiation of taurine release by agents acting on the three types of GABA receptors in both adult and developing hippocampus further indicates the involvement of transporters operating in an outward direction. This inference is corroborated by the moderate but significant inhibition of taurine uptake by the same compounds. Received June 28, 1999, Accepted August 31, 1999  相似文献   

17.
The region that becomes the ventromedial nucleus of the hypothalamus (VMH) is surrounded by cells and fibers containing immunoreactive gamma‐aminobutyric acid (GABA) by embryonic day 13 (E13), several days before the nucleus emerges in Nissl stains. As GABA plays many roles during neural development, we hypothesized that it influences VMH development, perhaps by providing boundary information for migrating neurons. To test this hypothesis we examined the VMH in embryonic mice in which the β3 subunit of the GABAA‐receptor, a receptor subunit that is normally highly expressed in this nucleus, was disrupted by gene targeting. In β3 ?/? embryos the VMH was significantly larger, and the distribution of cells containing immunoreactive estrogen receptor‐α was expanded compared to controls. Using in vitro brain slices from wild‐type C57BL/6J mice killed at E15 we found that treatment with the GABAA antagonist bicuculline increased the number of cells migrating per video field analyzed in the VMH. In addition, treatment with either bicuculline or the GABAA agonist muscimol altered the orientation of cell migration in particular regions of this nucleus. These data suggest that GABA is important for the organization of cells during VMH formation. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 264–276, 2001  相似文献   

18.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

19.
The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.  相似文献   

20.
A short and convergent synthetic approach to new photoactivatable precursors of γ-aminobutyric acid (GABA) is described. When photolyzed, the ‘caged’ GABA precursor efficiently releases GABA, as judged by depolarization measurements on the mammalian GABAA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号