首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that the disruption of bidirectional signaling between ephrin-B2 and EphB receptors impairs morphogenetic cell–cell septation and closure events during development of the embryonic midline. A novel role for reverse signaling is identified in tracheoesophageal foregut septation, as animals lacking the cytoplasmic domain of ephrin-B2 present with laryngotracheoesophageal cleft (LTEC), while both EphB2/EphB3 forward signaling and ephrin-B2 reverse signaling are shown to be required for midline fusion of the palate. In a third midline event, EphB2/EphB3 are shown to mediate ventral abdominal wall closure by acting principally as ligands to stimulate ephrin-B reverse signaling. Analysis of new ephrin-B26YFΔV and ephrin-B2ΔV mutants that specifically ablate ephrin-B2 tyrosine phosphorylation- and/or PDZ domain-mediated signaling indicates there are at least two distinct phosphorylation-independent components of reverse signaling. These involve both PDZ domain interactions and a non-canonical SH2/PDZ-independent form of reverse signaling that may utilize associations with claudin family tetraspan molecules, as EphB2 and activated ephrin-B2 molecules are specifically co-localized with claudins in epithelia at the point of septation. Finally, the developmental phenotypes described here mirror common human midline birth defects found with the VACTERL association, suggesting a molecular link to bidirectional signaling through B-subclass Ephs and ephrins.  相似文献   

2.
Vascular development begins with the formation of a primary vascular plexus that is rapidly remodeled by angiogenesis into the interconnected branched patterns characteristic of mature vasculature. Several receptor tyrosine kinases and their ligands have been implicated to control early development of the vascular system. These include the vascular endothelial growth factor receptors (VEGFR-1 and VEGFR-2) that bind VEGF, the Tie-1 and Tie-2 receptors that bind the angiopoietins, and the EphB4 receptor that binds the membrane-anchored ligand ephrin-B2. Targeted mutations in the mouse germline have revealed essential functions for these molecules in vascular development. In particular, protein-null mutations that delete either EphB4 or ephrin-B2 from the mouse have been shown to result in early embryonic lethality due to failed angiogenic remodeling. The venous expression of EphB4 and arterial expression of ephrin-B2 has lead to the speculation that the interaction of these two molecules leads to bidirectional signaling into both the receptor-expressing cell and the ligand-expressing cell, and that both forward and reverse signals are required for proper development of blood vessels in the embryo. Indeed, targeted removal of the ephrin-B2 carboxy-terminal cytoplasmic tail by another group was shown to perturb vascular development and result in the same early embryonic lethality as the null mutation, leading the authors to propose that ephrin-B2 reverse signaling directs early angiogenic remodeling of the primary vascular plexus [Cell 104 (2001) 57]. However, we show here that the carboxy-terminal cytoplasmic domain of ephrin-B2, and hence reverse signaling, is not required during early vascular development, but it is necessary for neonatal survival and functions later in cardiovascular development in the maturation of cardiac valve leaflets. We further show that ephrin-B2 reverse signaling is required for the pathfinding of axons that form the posterior tract of the anterior commissure. Our results thus indicate that ephrin-B2 functions in the early embryo as a typical instructive ligand to stimulate EphB4 receptor forward signaling during angiogenic remodeling and that later in embryonic development ephrin-B2 functions as a receptor to transduce reverse signals involved in cardiac valve maturation and axon pathfinding.  相似文献   

3.
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.  相似文献   

4.
Eph tyrosine kinase receptors and their membrane-bound ligands, ephrins, are presumed to regulate cell-cell interactions. The major consequence of bidirectional activation of Eph receptors and ephrin ligands is cell repulsion. In this study, we discovered that Xenopus Dishevelled (Xdsh) forms a complex with Eph receptors and ephrin-B ligands and mediates the cell repulsion induced by Eph and ephrin. In vitro re-aggregation assays with Xenopus animal cap explants revealed that co-expression of a dominant-negative mutant of Xdsh affected the sorting of cells expressing EphB2 and those expressing ephrin-B1. Co-expression of Xdsh induced the activation of RhoA and Rho kinase in the EphB2-overexpressed cells and in the cells expressing EphB2-stimulated ephrin-B1. Therefore, Xdsh mediates both forward and reverse signaling of EphB2 and ephrin-B1, leading to the activation of RhoA and its effector protein Rho kinase. The inhibition of RhoA activity in animal caps significantly prevents the EphB2- and ephrin-B1-mediated cell sorting. We propose that Xdsh, which is expressed in various tissues, is involved in EphB and ephrin-B signaling related to regulation of cell repulsion via modification of RhoA activity.  相似文献   

5.
Eph receptors and ephrin ligands are cell–cell communication molecules with well-defined roles in cell adhesion, migration, and tissue boundary formation. However, their expression levels in the squamocolumnar epithelial junction region at the distal esophagus are completely unknown. We examined EphB2 and ephrin-B1 localization in the squamocolumnar epithelial junction region between the proximal and distal stomach of the rodents. Immunostaining showed complimentary expression patterns along the proximal-to-distal axis of the gastric epithelia across the junction: EphB2 expression was maximal around the epithelial junction and sharply decreased in the stratified squamous epithelium at a short distance from the junction, whereas ephrin-B1 was strongly expressed in the stratified squamous epithelium at a distance from the junction and sharply decreased toward the junction. These expression patterns suggest that EphB2/ephrin-B1 signaling occurs preferentially in the epithelia across the junction, where the receptor and ligand expression highly overlap. We also show that (1) EphB2 preferentially binds ephrin-B1, and (2) cell repulsion/lateral migration was induced in primary cultured gastric keratinocytes on ephrin-B1-Fc- and EphB2-Fc-coated surfaces. On the basis of these findings, we propose that EphB2 and ephrin-B1 are possibly involved in epithelial boundary formation at the squamocolumnar junction.  相似文献   

6.
The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor‐mediated signaling contribute to ACp and CC axon guidance. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 405–420, 2016  相似文献   

7.
《Reproductive biology》2020,20(3):321-332
The erythropoietin-producing hepatocellular receptor B (EphB) class and ephrin-B ligand have been implicated in boundary formation in various epithelia. We recently found that ephrin-B1 and EphB2/EphB4 exhibit complementary expression in the epithelia along the excurrent duct system in the adult mouse testis. Moreover, the organisation and integrity of the duct system is indispensable for the transport of spermatozoa. Here, we examined ephrin-B1, EphB2 and EphB4 expression in the mouse testis during postnatal development. RT-PCR analysis revealed that the relative expression levels of these molecules decreased with age in early postnatal development, and were similar to those of adults by four weeks of age. Furthermore, immunostaining revealed that the excurrent duct system compartments exhibiting complementary expression of ephrin-B1 and EphB2/EphB4 were formed by two weeks of age. Meanwhile, ephrin-B1 and EphB4 were effective markers for spermatogonia in the neonatal testis due to their negative expression in gonocytes. Alternatively, EphB2 was a suitable marker for assessing completion of the first wave of spermatogenesis in puberty, due to its strong expression in the elongated spermatids of seminiferous tubules. Lastly, ephrin-B1 and EphB4 proved to be markers of both foetal and adult Leydig cells during postnatal development, as they were expressed in CYP17A1-positive cells. This study is the first to investigate the expression of ephrin-B1, EphB2, and EphB4 in normal mouse testes during postnatal development. The expression patterns of ephrin-B and EphBs may represent suitable tools for examining organisation of the excurrent duct system and monitoring reproductive toxicity during postnatal development.  相似文献   

8.
The mammalian secondary palate forms from two shelves of mesenchyme sheathed in a single-layered epithelium. These shelves meet during embryogenesis to form the midline epithelial seam (MES). Failure of MES degradation prevents mesenchymal confluence and results in a cleft palate. Previous studies indicated that MES cells undergo features of epithelial-to-mesenchymal transition (EMT) and may become migratory as part of the fusion mechanism. To detect MES cell movement over the course of fusion, we imaged the midline of fusing embryonic ephrin-B2/GFP mouse palates in real time using two-photon microscopy. These mice express an ephrin-B2-driven green fluorescent protein (GFP) that labels the palatal epithelium nuclei and persists in those cells through the time window necessary for fusion. We observed collective migration of MES cells toward the oral surface of the palatal shelf over 48 hr of imaging, and we confirmed histologically that the imaged palates had fused by the end of the imaged period. We previously reported that ephrin reverse signaling in the MES is required for palatal fusion. We therefore added recombinant EphA4/Fc protein to block this signaling in imaged palates. The blockage inhibited fusion, as expected, but did not change the observed migration of GFP-labeled cells. Thus, we uncoupled migration and fusion. Our data reveal that palatal MES cells undergo a collective, unidirectional movement during palatal fusion and that ephrin reverse signaling, though required for fusion, controls aspects of the fusion mechanism independent of migration.  相似文献   

9.
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.  相似文献   

10.
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.  相似文献   

11.
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.  相似文献   

12.
Ephrin receptors and ligands are membrane-bound molecules that modulate diverse cellular functions such as cell adhesion, epithelial–mesenchymal transition, motility, differentiation and proliferation. We recently reported the co-expression of ephrin-B1 and EphB4 in adult and foetal Leydig cells of the mouse testis, and thus speculated that their co-expression is a common property in gonadal steroidogenic cells. Therefore, in this study we examined the expression and localisation of ephrin-B1 and EphB4 in the naturally cycling mouse ovary, as their expression patterns in the ovary are virtually unknown. We found that ephrin-B1 and EphB4 were co-expressed in steroidogenic cells of all kinds, i.e. granulosa cells and CYP17A1-positive steroidogenic theca cells as well as in 3β-HSD-positive luteal cells and the interstitial glands; their co-expression potentially serves as a good marker to identify sex steroid-producing cells even in extra-gonadal organs/tissues. We also found that ephrin-B1 and EphB4 expression in granulosa cells was faint and strong, respectively; ephrin-B1 expression in luteal cells was weak in developing and temporally mature corpora lutea (those of the current cycle) and likely strong in regressing corpora lutea (those of the previous cycle) and EphB4 expression in luteal cells was weak in corpora lutea of the current cycle and likely faint/negative in the corpora lutea of the previous cycle. These findings suggest that a luteinising hormone surge triggers the upregulation of ephrin-B1 and downregulation of EphB4, as this expression fluctuation occurs after the surge. Overall, ephrin-B1 and EphB4 expression patterns may represent benchmarks for steroidogenic cells in the ovary.  相似文献   

13.
A member of the largest family of receptor protein kinases, EphB6, lacks its intrinsic kinase activity, but it is expressed in normal human tissues. To investigate the physiological function of EphB6, we generated EphB6 deficient mice. EphB6(-/-) mice developed normally, revealed no abnormality in general appearance, and were fertile. Although a developmental increase of EphB6 in the fetal thymus was confirmed, T-cell development in various lymphoid organs of EphB6(-/-) mice was comparable to those of EphB6(+/+). Even in fetal thymus organ cultures, any developmental differences of EphB6(-/-) and EphB6(+/+) thymocytes were undetectable. The different binding characteristics to ephrin-Fc proteins between EphB6(-/-) and EphB6(+/+) thymocytes demonstrated that ephrin-B2 is the unique ligand for EphB6 among eight known ephrins. While EphB6 was a dominant receptor that binds to ephrin-B2 in adult thymocytes, fetal ones also expressed another EphB that binds to ephrin-B2. Overlapping expression of the EphB subfamily in the fetal thymus might compensate for the loss of EphB6 during the thymic development.  相似文献   

14.
Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules with well-defined roles in development. However, their expression and functions in the gastric epithelium are virtually unknown. We detected several EphB receptors and ephrin-Bs in the gastric corpus mucosa of the adult rodent stomach by RT-PCR amplification. Immunostaining showed complementary expression patterns, with EphB receptors preferentially expressed in the deeper regions and ephrin-Bs in the superficial regions of the gastric units. EphB1, EphB2 and EphB3 are expressed in mucous neck, chief and parietal cells, respectively. In contrast, ephrin-B1 is in pit cells and proliferating cells of the isthmus. In a mouse ulcer model, EphB2 expression was upregulated in the regenerating epithelium and expanded into the isthmus. Thus, EphB/ephrin-B signaling likely occurs preferentially in the isthmus, where receptor-ligand overlap is highest. We show that EphB signaling in primary gastric epithelial cells promotes cell retraction and repulsion at least in part through RhoA activation. Based on these findings, we propose that the EphB-positive progeny of gastric stem cells migrates from the isthmus toward the bottom of the gastric glands due to repulsive signals arising from contact with ephrin-Bs, which are preferentially expressed in the more superficial regions of the isthmus and gastric pits.  相似文献   

15.
Precision in auditory brainstem connectivity underlies sound localization. Cochlear activity is transmitted to the ventral cochlear nucleus (VCN) in the mammalian brainstem via the auditory nerve. VCN globular bushy cells project to the contralateral medial nucleus of the trapezoid body (MNTB), where specialized axons terminals, the calyces of Held, encapsulate MNTB principal neurons. The VCN-MNTB pathway is an essential component of the circuitry used to compute interaural intensity differences that are used for localizing sounds. When input from one ear is removed during early postnatal development, auditory brainstem circuitry displays robust anatomical plasticity. The molecular mechanisms that control the development of auditory brainstem circuitry and the developmental plasticity of these pathways are poorly understood. In this study we examined the role of EphB signaling in the development of the VCN-MNTB projection and in the reorganization of this pathway after unilateral deafferentation. We found that EphB2 and EphB3 reverse signaling are critical for the normal development of the projection from VCN to MNTB, but that successful circuit assembly most likely relies upon the coordinated function of many EphB proteins. We have also found that ephrin-B reverse signaling repels induced projections to the ipsilateral MNTB after unilateral deafferentation, suggesting that similar mechanisms regulate these two processes.  相似文献   

16.
No ligand has hitherto been designated for the Eph receptor tyrosine kinase family member, EphB6. Here, expression of an EphB6 ligand in the pro-B leukemic cell line, Reh, is demonstrated by binding of soluble EphB6-Fc fusion protein to the Reh cells. The ligand belongs to the subgroup of membrane spanning ligands, as suggested by the fact that phosphatidylinositol-specific phospholipase C treatment did not abrogate binding of EphB6-Fc. Two transmembrane Eph receptor ligands, ephrin-B1 and ephrin-B2, were identified in Reh cells. Analysis of EphB6-Fc fusion protein binding to ephrin-B1 or ephrin-B2 transfected COS cells revealed a high-affinity saturable binding between EphB6-Fc and ephrin-B2, but not with ephrin-B1. In mice, EphB6 has previously been shown to be expressed in thymus. Here, we show expression of EphB6 in human thymus, as well as the expression of ephrin-B2 in both human and mouse thymus. We conclude that ephrin-B2 may be a physiological ligand for the EphB6 receptor.  相似文献   

17.
Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules that regulate the spatial organisation of cells in various tissues by repulsive or adhesive signals arising from contact between EphB- and ephrin-bearing cells. However, the expression and functions of Eph receptors in the gastric epithelium and Brunner’s glands are virtually unknown. We detected several EphB receptors and ephrin-B ligands in the pyloric and duodenal mucosa of the adult mouse by RT-PCR amplification. Immunostaining showed complementary expression patterns, with ephrin-B1 being preferentially expressed in the superficial part and EphB receptors in the deeper part of both epithelia. In the gastric pylorus, ephrin-B1 was expressed in pit cells and proliferating cells of the isthmus. In contrast, EphB2, EphB3, and EphB4 were expressed in pyloric glandular cells and proliferating cells of the isthmus. In the duodenum, ephrin-B1 was expressed in cells lining the ducts of Brunner’s glands as well as those covering villi and the upper portion of the crypts of Lieberkühn. In contrast, EphB2 and EphB3 were expressed in the gland segment of Brunner’s glands and the lower portion of the crypts and EphB4, in the crypts. In both mucosae, EphB2, EphB3, and EphB4 were found to be tyrosine phosphorylated, suggesting that EphB/ephrin-B signalling might occur preferentially in the isthmus, crypts, and duct-gland transition of Brunner’s glands, where the receptor and ligand expression overlaps. Based on these findings, we propose that EphB/ephrin-B signalling may regulate cell positioning within the pyloric and duodenal epithelium.  相似文献   

18.
Axon fasciculation is one of the processes controlling topographic innervation during embryonic development. While axon guidance steers extending axons in the accurate direction, axon fasciculation allows sets of co-extending axons to grow in tight bundles. The Eph:ephrin family has been involved both in axon guidance and fasciculation, yet it remains unclear how these two distinct types of responses are elicited. Herein we have characterized the role of ephrin-B1, a member of the ephrinB family in sensory and motor innervation of the limb. We show that ephrin-B1 is expressed in sensory axons and in the limb bud mesenchyme while EphB2 is expressed in motor and sensory axons. Loss of ephrin-B1 had no impact on the accurate dorso-ventral innervation of the limb by motor axons, yet EfnB1 mutants exhibited decreased fasciculation of peripheral motor and sensory nerves. Using tissue-specific excision of EfnB1 and in vitro experiments, we demonstrate that ephrin-B1 controls fasciculation of axons via a surround repulsion mechanism involving growth cone collapse of EphB2-expressing axons. Altogether, our results highlight the complex role of Eph:ephrin signaling in the development of the sensory-motor circuit innervating the limb.  相似文献   

19.
Ephrin-B2 is a transmembrane ligand that is specifically expressed on arteries but not veins and that is essential for cardiovascular development. However, ephrin-B2 is also expressed in nonvascular tissues and interacts with multiple EphB class receptors expressed in both endothelial and nonendothelial cell types. Thus, the identity of the relevant receptor for ephrin-B2 and the site(s) where these molecules interact to control angiogenesis were not clear. Here we show that EphB4, a specific receptor for ephrin-B2, is exclusively expressed by vascular endothelial cells in embryos and is preferentially expressed on veins. A targeted mutation in EphB4 essentially phenocopies the mutation in ephrin-B2. These data indicate that ephrin-B2-EphB4 interactions are intrinsically required in vascular endothelial cells and are consistent with the idea that they mediate bidirectional signaling essential for angiogenesis.  相似文献   

20.
Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh) signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations in humans. Moreover, deranged Shh and BMP signaling is correlated with severe anorectal malformations in both mouse and humans.KEY WORDS: Anorectal malformation, Cloaca, Patterning, Epithelial differentiation, Sonic hedgehog  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号