首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Tyrosine hydroxylase (EC1.14.16.2), presumably the rate-limiting enzyme in the biosynthesis of catecholamines, is known to catalyze the hydroxylation of both phenylalanine and tyrosine. Using both an isolated enzyme preparation and a synaptosomal preparation, where some architectural integrity of the tissue has been preserved, we have attempted to evaluate the manner in which these two substrates are hydroxylated by rat brain tyrosine hydroxylase. In the presence of tetrahydrobiopterin the isolated enzyme catalyzes the hydroxylation of phenylalanine to 3,4-dihydroxyphenylalanine with the release of free tyrosine as an obligatory intermediate. In contrast, the rat brain striatal synaptosomal preparation in the presence of endogenous cofactor converts phenylalanine to 3,4-dihydroxyphenylalanine without the release of free tyrosine.  相似文献   

2.
Pheochromocytoma tyrosine hydroxylase was reported to have unusual catalytic properties, which might be unique to the tumor enzyme (Dix, T. A., Kuhn, D. M., and Benkovic, S. J. (1987) Biochemistry 24, 3354-3361). Two such properties, namely the apparent inability to hydroxylate phenylalanine and an unprecedented reactivity with hydrogen peroxide were investigated further in the present study. Tyrosine hydroxylase was purified to apparent homogeneity from cultured pheochromocytoma PC12 cells. The purified tumor enzyme was entirely dependent on tetrahydrobiopterin (BH4) for the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine and hydrogen peroxide could not substitute for the natural cofactor. Indeed, in the presence of BH4, increasing concentrations of hydrogen peroxide completely inhibited enzyme activity. The PC12 hydroxylase exhibited typical kinetics of tyrosine hydroxylation exhibited typical kinetics of tyrosine hydroxylation, both as a function of tyrosine (S0.5 Tyr = 15 microM) and BH4 (apparent Km BH4 = 210 microM). In addition, the enzyme catalyzed the hydroxylation of substantial amounts of phenylalanine to tyrosine and 3,4-dihydroxyphenylalanine (apparent Km Phe = 100 microM). Phenylalanine did not inhibit the enzyme in the concentrations tested, whereas tyrosine showed typical substrate inhibition at concentrations greater than or equal to 50 microM. At higher substrate concentrations, the rate of phenylalanine hydroxylation was equal to or exceeded that of tyrosine. Essentially identical results were obtained with purified tyrosine hydroxylase from pheochromocytoma PC18 cells. The data suggest that the tumor enzyme has the same substrate specificity and sensitivity to hydrogen peroxide as tyrosine hydroxylase from other tissues.  相似文献   

3.
The catalytic domains of the pterin-dependent enzymes phenylalanine hydroxylase and tyrosine hydroxylase are homologous, yet differ in their substrate specificities. To probe the structural basis for the differences in specificity, seven residues in the active site of phenylalanine hydroxylase whose side chains are dissimilar in the two enzymes were mutated to the corresponding residues in tyrosine hydroxylase. Analysis of the effects of the mutations on the isolated catalytic domain of phenylalanine hydroxylase identified three residues that contribute to the ability to hydroxylate tyrosine, His264, Tyr277, and Val379. These mutations were incorporated into full-length phenylalanine hydroxylase and the complementary mutations into tyrosine hydroxylase. The steady-state kinetic parameters of the mutated enzymes showed that the identity of the residue in tyrosine hydroxylase at the position corresponding to position 379 of phenylalanine hydroxylase is critical for dihydroxyphenylalanine formation. The relative specificity of tyrosine hydroxylase for phenylalanine versus tyrosine, as measured by the (V/K(phe))/(V/K(tyr)) value, increased by 80000-fold in the D425V enzyme. However, mutation of the corresponding valine 379 of phenylalanine hydroxylase to aspartate was not sufficient to allow phenylalanine hydroxylase to form dihydroxyphenylalanine at rates comparable to that of tyrosine hydroxylase. The double mutant V379D/H264Q PheH was the most active at tyrosine hydroxylation, showing a 3000-fold decrease in the (V/K(phe))/(V/K(tyr)) value.  相似文献   

4.
SEROTONIN, a putative neurotransmitter in the mammalian central nervous system, is synthesized in the brain by the 5-hydroxylation and decarboxylation of the essential amino-acid L-tryptophan1,2. The control of serotonin biosynthesis seems to involve a different mechanism from that responsible for catecholamine biosynthesis3,4 in its dependence on the availability of the amino-acid precursor5,6. Thus, small doses of tryptophan that do not increase brain or plasma tryptophan concentrations beyond their normal daily ranges cause significant increases in the serotonin concentration of rat brain7. Conversely, the chronic ingestion of diets lacking in tryptophan (with casein hydrolysates or amino-acid mixtures substituted for natural proteins) depresses brain serotonin levels8–10. The dependence of serotonin biosynthesis on tryptophan availability probably arises from the unusually high substrate K M that characterizes tryptophan hydroxylase1. It seems likely that this enzyme normally functions in an unsaturated state; hence physiological increases in intraneuronal tryptophan could drive the hydroxylation of the amino-acid and, ultimately, its conversion to serotonin.  相似文献   

5.
It has been generally assumed that a tetrahydropterin (2-amino-5,6,7,8-tetrahydro-4-pteridinone) is essential for activity of the three aromatic amino acid hydroxylases. In this report it is shown that appropriately substituted pyrimidines can assume the role of cofactor for phenylalanine hydroxylase. 2,5,6-Triamino-4-pyrimidinone(V) and 5-benzylamino-2,6-diamino-4-pyrimidinone(VI) possess the same Km values (0.1 mM and 0.003 mM) and stoichiometry of tyrosine generated to cofactor consumed (0.4 and 1.0) as their corresponding pteridine analogs, tetrahydropterin(III) and 6-phenyltetrahydropterin(IV). However, the rates with pyrimidines are lower. The ratio of rates VIII = 0.045 and VIIV = 0.015. These results indicate that pteridine carbons 6 and 7 are not fundamental to cofactor binding or function, though they markedly influence the maximum velocity of hydroxylation. Pyrimidine cofactors of phenylalanine hydroxylase are valuable probes for the elucidation of the binding forces, transition states, and mechanism of oxygen activation of these hydroxylases.  相似文献   

6.
When rats were fed a low protein diet containing 3% or more of phenylalanine, their growth rate and food intake were depressed, and eye and paw lesions which were similar to those in tyrosine toxicity developed in all rats. Their liver phenylalanine hydroxylase activity was depressed in proportion to the dietary phenylalanine content, and dihydropteridine reductase activity was in a great excess over hydroxylation activity, so phenylalanine hydroxylase activity seemed to be limited firstly in the degradation of phenylalanine. Excessive phenylalanine was accumulated, and the tyrosine concentration was higher than that of phenylalanine in the plasma and tissues of rats fed a diet containing 2% or more of phenylalanine. When p-Cl-phenylalanine (p-Cl-Phe) was injected to the rats fed excess phenylalanine, the phenylalanine hydroxylase was depressed, the concentration of tyrosine in the body was lowered, and the development of eye and paw lesions was prevented completely. The development of eye and paw lesions seemed to be associated with the extremely elevated tyrosine concentration in the body.  相似文献   

7.
The role of several reducing systems in the tyrosine hydroxylase reaction has been studied. A significant dependence upon the reducing systems beyond that required to regenerate the oxidized cofactor has been observed. 2-Mercaptoethanol, NADPH, and ascorbate are each effective at reducing the cofactor, but their abilities to stimulate tyrosine hydroxylase vary over a threefold range. NADPH is a suitable reductant for the tyrosine hydroxylase reaction, even in the absence of pteridine reductase. A reducing system containing ascorbate, ferrous ion, and catalase gives unusually high enzyme activity and low blanks. This ascorbate system, in addition to being useful for in vitro enzyme assays, may serve as a model for the in vivo reaction. Ascorbate may play an important role in the hydroxylation of tyrosine in catecholaminergic tissues. This study demonstrates that an efficient reductant for the tyrosine hydroxylase reaction must, in addition to reducing the pterin cofactor, also interact effectively with the enzyme itself.  相似文献   

8.
THE enzyme tyrosine hydroxylase1 (TH), which has been reported as the rate limiting step in noradrenaline biosynthesis, can be modified by nerve stimulation, cold2,3, exercise4, reser-pine, phenoxybenzamine and monoamine oxidase inhibitors5–7. These treatments affect not only the enzyme in vitro but also catecholamine synthesis in vivo. Much of this information has come from studies with heart, brain, adrenals and spleen, but we found that blood vessels contain appreciable concentrations of noradrenaline8 and synthesize it in vivo from its precursor tyrosine. We now report that blood vessels have higher tyrosine hydroxylase activity than the heart and that this activity can be modified by reserpine and L-dihydroxyphenylalanine (L-dopa). Furthermore, the activity of tyrosine hydroxylase in the blood vessels of a spontaneously hypertensive rat differs from that in its normotensive control. We also found that the activity of the enzyme monoamine oxidase in the vasculature was affected by drugs and changes in blood pressure.  相似文献   

9.
A 4a-carbinolamine intermediate is generated stoichiometrically during the tetrahydrobiopterin-dependent phenylalanine hydroxylation reaction catalyzed by phenylalanine hydroxylase. The dehydration of the carbinolamine is catalyzed by the enzyme, 4a-hydroxytetrahydropterin dehydratase. We have now examined the distribution of the dehydratase activity in various rat tissues by activity measurements and by immunoblot analysis to explore the possibility that the dehydratase may also play a role in tyrosine and tryptophan hydroxylation. The only two tissues that express relatively high dehydratase activity are liver and kidney, which are also the only two tissues that express phenylalanine hydroxylase activity. The dehydratase activity was generally very low in those tissues which contain high levels of tyrosine and tryptophan hydroxylase activity, except for the pineal gland. These results suggest that the dehydratase may not play an important role in the regulation of the synthesis of those neurotransmitters which are derived from the hydroxylated aromatic amino acids.  相似文献   

10.
The hydroxylation of phenylalanine to tyrosine by the liver enzyme phenylalanine hydroxylase is regulated by the level of phenylalanine. Whether there is a distinct allosteric binding site for phenylalanine outside of the active site has been unclear. The enzyme contains an N-terminal regulatory domain that extends through Thr117. The regulatory domain of rat phenylalanine hydroxylase was expressed in Escherichia coli. The purified protein behaves as a dimer on a gel filtration column. In the presence of phenylalanine, the protein elutes earlier from the column, consistent with a conformational change in the presence of the amino acid. No change in elution is seen in the presence of the non-activating amino acid proline. 1H–15N HSQC NMR spectra were obtained of the 15N-labeled protein alone and in the presence of phenylalanine or proline. A subset of the peaks in the spectrum exhibits chemical shift perturbation in the presence of phenylalanine, consistent with binding of phenylalanine at a specific site. No change in the NMR spectrum is seen in the presence of proline. These results establish that the regulatory domain of phenylalanine hydroxylase can bind phenylalanine, consistent with the presence of an allosteric site for the amino acid.  相似文献   

11.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

12.
Serotonin synthesis by two distinct enzymes in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Annotation of the sequenced Drosophila genome suggested the presence of an additional enzyme with extensive homology to mammalian tryptophan hydroxylase, which we have termed DTRH. In this work, we show that enzymatic analyses of the putative DTRH enzyme expressed in Escherichia coli confirm that it acts as a tryptophan hydroxylase but can also hydroxylate phenylalanine, in vitro. Building upon the knowledge gained from the work in mice and zebrafish, it is possible to hypothesize that DTRH may be primarily neuronal in function and expression, and DTPH, which has been previously shown to have phenylalanine hydroxylation as its primary role, may be the peripheral tryptophan hydroxylase in Drosophila. The experiments presented in this report also show that DTRH is similar to DTPH in that it exhibits differential hydroxylase activity based on substrate. When DTRH uses tryptophan as a substrate, substrate inhibition, catecholamine inhibition, and decreased tryptophan hydroxylase activity in the presence of serotonin synthesis inhibitors are observed. When DTRH uses phenylalanine as a substrate, end product inhibition, increased phenylalanine hydroxylase activity after phosphorylation by cAMP-dependent protein kinase, and a decrease in phenylalanine hydroxylase activity in the presence of the serotonin synthesis inhibitor, alpha-methyl-(DL)-tryptophan are observed. These experiments suggest that the presence of distinct tryptophan hydroxylase enzymes may be evolutionarily conserved and serve as an ancient mechanism to appropriately regulate the production of serotonin in its target tissues.  相似文献   

13.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

14.
Incubation of bovine chromaffin cells with L-[14C]phenylalanine resulted in label accumulation in catecholamines at about 30% of the rate seen with L-tyrosine as precursor. Studies with purified tyrosine hydroxylase (EC 1.14.16.2) showed that the enzyme catalysed the hydroxylation of L-phenylalanine first to L-p-tyrosine and then to 3,4-dihydroxyphenylalanine (DOPA). No evidence for a significant involvement of an L-m-tyrosine intermediate in DOPA formation was found.  相似文献   

15.
Tyrosine hydroxylation rate was measured by a modified tritium release assay at the physiological pH of 7.4 in synaptosomes prepared from cerebellum, hippocampus and hypothalamus. Incubation in the presence of 2 mM 8 bromo cAMP increased tyrosine hydroxylation in all three regions. An almost identical activation was seen after membrane depolarization by 50 mM K+. Removal of Ca2+ from the incubation medium had no significant effect on the activation produced by either agent, however it did significantly increase the control tyrosine hydroxylation rate in the hypothalamus. The combined effect of 8 Br cAMP and high K+ was found to be additive in the cerebellum and hippocampus but not in the hypothalamus. A reduction in tyrosine hydroxylation was observed if incubation was carried out in the presence of 1 μM noradrenaline; the degree of inhibition was similar in the three regions. 2 mM 8 Br. cAMP added to the noradrenaline restored tyrosine hydroxylation to control levels in synaptosomes from the hypothalamus, but not the hippocampus and cerebellum. Tyrosine hydroxylase in the hypothalamus is associated with dopaminergic nerve terminals as well as noradrenergic nerve terminals derived from more than one cell group, the hippocampus and cerebellum however both receive their noradrenergic input entirely from the locus coeruleus. Differences between synaptosomes from the three brain regions may therefore reflect differences in the nature of the enzyme as well as local regulatory mechanisms.  相似文献   

16.
The range of phenylalanine hydroxylase activity was determined by measuring the conversion of radioactive phenylalanine to tyrosine in liver and kidney of various vertebrates. Rodents (rats, mouse, gerbil, hamster and guinea pig) were found to have the highest liver phenylalanine hydroxylase activity among all animals studied. They are also the only species that possessed a significant kidney phenylalanine hydroxylase activity which was about 25% of that found in the liver of the same animal. The synthetic dimethyl-tetrahydro-pteridine, used as a cofactor for the enzyme assay in most studies, catalyzed non-enzymatic hydroxylation of phenylalanine to tyrosine. Inclusion of boiled-blank and strict control of timing between incubation and product measurement were essential precautions to minimize erroneous results from substrate contamination and non-enzymatic hydroxylation.  相似文献   

17.
The activities of three pterin-requiring monooxygenases, phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase, are regulated by the level of the pterin cofactor, (6R)-l-erythro-tetrahydrobiopterin, which is synthesized from guanosine triphosphate (GTP). Since tyrosine hydroxylase or tryptophan hydroxylase is the rate-limiting enzyme for the biosynthesis of catecholamines (dopamine, norepinephrine and epinephrine) or serotonin in monoaminergic neurons, biosynthesis of tetrahydrobiopterin from GTP may also regulate the tissue level of monoamine transmitters. Recent evidences indicate that biosynthesis of tetrahydrobiopterin and that of biogenic monoamines may be regulated each other.  相似文献   

18.
l-Ascorbate stimulates the enzymic hydroxylation of phenylalanine in vitro by recycling tetrahydrobiopterin, which reduces O2 utilized in the reaction. It is suggested that ascorbate might have a similar function in vivo; this would explain the apparent regulation of tyrosine hydroxylase and tryptophan hydroxylase activities by this vitamin.  相似文献   

19.
The formation of 3H2O from L-4-3H-phenylalanine is used as an index of tyrosine hydroxylase activity in synaptosomes from rat hippocampus, hypothalamus, and striatum. The reactions are linear with respect to time (up to 20 min) and with respect to protein concentration (up to 0.2 mg/ml). Formation of 3H2O from L-4-3H-phenylalanine is inhibited by standard tyrosine hydroxylase inhibitors (α-methyl-p-tyrosine, L-3-iodotyrosine, dopamine, L-norepinephrine, and L-apomorphine) and by the tyrosine hydroxylase substrate L-tyrosine as well as by synaptosomal lysis. The blank 3H2O produced from L-4-3H-phenylalanine (0.02% of total DPM) is 10-fold less than the blank 3H2O produced from L-3,5-3H-tyrosine. The Km values of tyrosine hydroxylase for phenylalanine determined by the production of 3H2O from L-4-3H-phenylalanine are 3.1, 1.3, and 1.2 μm in hippocampal, hypothalamic and striatal synaptosomes respectively. The results indicate that analysis of 3H2O formed from L-4-3H-phenylalanine is a sensitive and reliable method for quantitating synaptosomal tyrosine hydroxylase activity from tissues with low levels of tyrosine hydroxylase such as synaptosomes from hippocampus and hypothalamus.  相似文献   

20.
KOE and Weissman have demonstrated that p-chlorophenylalanine (pCPA) depletes serotonin in the brain of mammals1. pCPA induces a variety of behaviour changes in rat, cat and other animals2,3, presumably because of the depletion of serotonin in the brain. The biochemical mechanism of the depletion remains, however, to be elucidated, although it has been proposed that pCPA might inactivate tryptophan hydroxylase in the brain4. We demonstrate here that pCPA does not inactivate tryptophan hydroxylase in rat pineal, although pCPA depletes the serotonin level in the pineal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号