首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光还原的硫氧还蛋白对6—磷酸葡萄糖脱氢酶的钝化作用   总被引:1,自引:0,他引:1  
测定了豌豆(Pisum sativum)幼苗的重组叶绿体中光还原的硫氧还蛋白(Td)对6-磷酸葡萄糖脱氢酶(G6PDH)的钝化作用.结果表明,Td在叶绿体G6PDH的光抑制和暗激活中均起重要的调节作用.在其绿色叶片和黄化组织中,G6PDH都存在着两种同工酶,但二硫苏糖醇(DTT)和Td对黄化幼苗中G6PDH活性的影响与叶绿体的明显不同,DTT对黄化幼苗G6PDH的钝化作用和氧化Td的活化作用均低于对叶绿体中的这两种作用.  相似文献   

2.
The activity of glucose-6-phosphate dehydrogenase (G6PDH, E. C. 1.1.1.49) in a reconsituted pea chloroplast system was assayed spectrophotometrically by the reduction of NADP, ming glucose-6-phosphate as substrate. Deactivation of G6PDH could be intensified by adding lightreduced thioredoxin (Td) into the reconstituted chloroplast system. The experimental results presented suggest that Td plays an important role not only in the dark activation, but also in the light deactivation of G6PDH in chloroplasts. There were two isozymes of G6PDH in green and in etiolated pea seedlings. The effects of dithiothreitol (DTT) and Td on G6PDH in etiolated seedlings were different from that in chloroplasts. The light regulation of G6PDH in chloroplasts is mediated through Td.  相似文献   

3.
Wright DP  Huppe HC  Turpin DH 《Plant physiology》1997,114(4):1413-1419
Pyridine nucleotide pools were measured in intact plastids from roots of barley (Hordeum vulgare L.) during the onset of NO2- assimilation and compared with the in vitro effect of the NADPH/NADP ratio on the activity of plastidic glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) from N-sufficient or N-starved roots. The NADPH/NADP ratio increased from 0.9 to 2.0 when 10 mM glucose-6-phosphate was supplied to intact plastids. The subsequent addition of 1 mM NaNO2 caused a rapid decline in this ratio to 1.5. In vitro, a ratio of 1.5 inactivated barley root plastid G6PDH by approximately 50%, suggesting that G6PDH could remain active during NO2- assimilation even at the high NADPH/NADP ratios that would favor a reduction of ferredoxin, the electron donor of NO2- reductase. Root plastid G6PDH was sensitive to reductive inhibition by dithiothreitol (DTT), but even at 50 mM DTT the enzyme remained more than 35% active. In root plastids from barley starved of N for 3 d, G6PDH had a substantially reduced specific activity, had a lower Km for NADP, and was less inhibited by DTT than the enzyme from N-sufficient root plastids, indicating that there was some effect of N starvation on the G6PDH activity in barley root plastids.  相似文献   

4.
Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) has been purified from potato tuber at least 850-fold to apparent homogeneity as judged by SDS-PAGE. The enzyme was characterized by Km values of 260 μM for glucose-6-phosphate and 6 μM for NADP and a broad pH optimum between phi 7.5 and 9. NADPH, GTP, ATP, acetyl CoA and CoA inhibited G6PDH activity. Dithiothreitol (DTT) did not inactivate the enzyme. A highly specific antiserum was produced in a rabbit and used for immunodetection of G6PDH in Western blots. A cDNA library from potato leaves was screened with DNA probes produced by the polymerase chain reaction (PCR) in the presence of g6pdh-specific primers. A full-length cDNA clone was analyzed and the derived amino acid sequence compared with known G6PDH sequences from various sources. The homology of the plant sequence with G6PDH sequences from animals and yeast was found to be rather high (52%), whereas there was significantly lower homology with sequences of bacterial origin (37%). The lack of a plastidic signal sequence as well as the insensitivity of the recombinant enzyme towards reduced DTT, support the view that the cDNA sequence of a redox-independent cytosolic isoform was obtained.  相似文献   

5.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

6.
NADP reduction was shown to occur in a crude cytosolic extract from the cotyledonary material of hazel seed prior to the addition of erogenous dehydrogenase substrate. This activity interfered with the assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities. The inherent NADP reduction was removed by ammonium sulphate fractionation. Subsequent de-salting of the resulting partially-purified fraction permitted assay of G6PDH and 6PGDH. Both enzymes were shown to be NADP specific. Typical Michaelis-Menten kinetics were shown for each enzyme, towards NADP and their respective substrate.  相似文献   

7.
This work reports the development of an amperometric glucose-6-phosphate biosensor by coimmobilizing p-hydroxybenzoate hydroxylase (HBH) and glucose-6-phosphate dehydrogenase (G6PDH) on a screen-printed electrode. The principle of the determination scheme is as follows: G6PDH catalyzes the specific dehydrogenation of glucose-6-phosphate by consuming NADP(+). The product, NADPH, initiates the irreversible the hydroxylation of p-hydroxybenzoate by HBH in the presence of oxygen to produce 3,4-dihydroxybenzoate, which results in a detectable signal due to its oxidation at the working electrode. The sensor shows a broad linear detection range between 2 microM and 1000 microM with a low detection limit of 1.2 microM. Also, it has a fast measuring time which can achieve 95% of the maximum current response in 20s after the addition of a given concentration of glucose-6-phosphate with a short recovery time (2 min).  相似文献   

8.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is irreversibly inactivated by the 2,3'-dialdehyde of NADP+ (oNADP+) in the absence of substrate. The inactivation is first order with respect to NADP+ concentration and follows saturation kinetics, indicating that the enzyme initially forms a reversible complex with the inhibitor followed by covalent modification (KI = 1.8 mM). NADP+ and NAD+ protect the enzyme from inactivation by oNADP+. The pK of inactivation is 8.1. oNADP+ is an effective coenzyme in assays of glucose-6-phosphate dehydrogenase (Km = 200 microM). Kinetic evidence and binding studies with [14C] oNADP+ indicate that one molecule of oNADP+ binds per subunit of glucose-6-phosphate dehydrogenase when the enzyme is completely inactivated. The interaction between oNADP+ and the enzyme does not generate a Schiff's base, or a conjugated Schiff's base, but the data are consistent with the formation of a dihydroxymorpholino derivative.  相似文献   

9.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

10.
The gsdA gene of the extreme thermophilic bacterium Aquifex aeolicus, encoding glucose-6-phosphate dehydrogenase (G6PDH), was cloned into a high-expression vector and overexpressed as a fusion protein in Escherichia coli. Here we report the characterization of this recombinant thermostable G6PDH. G6PDH was purified to homogeneity by heat precipitation followed by immobilized metal affinity chromatography on a nickel-chelate column. The data obtained indicate that the enzyme is a homodimer with a subunit molecular weight of 55 kDa. G6PDH followed Michaelis-Menten kinetics with a K(M) of 63 micro M for glucose-6-phosphate at 70 degrees C with NADP as the cofactor. The enzyme exhibited dual coenzyme specificity, although it showed a preference in terms of k(cat)/ K(M) of 20.4-fold for NADP over NAD at 40 degrees C and 5.7-fold at 70 degrees C. The enzyme showed optimum catalytic activity at 90 degrees C. Modeling of the dimer interface suggested the presence of cysteine residues that may form disulfide bonds between the two subunits, thereby preserving the oligomeric integrity of the enzyme. Interestingly, addition of dithiothreitol or mercaptoethanol did not affect the activity of the enzyme. With a half-life of 24 h at 90 degrees C and 12 h at 100 degrees C, this is the most thermostable G6PDH described.  相似文献   

11.
Two NADP-cleaving enzymes, namely NADP glycohydrolase and NADP pyrophosphatase, are present in a rat liver extract that inactivates G6PD (glucose 6-phosphate dehydrogenase). The following results suggest that a third G6PD-inactivating protein is present in this extract. (1) Nicotinamide, which selectively inhibits NADP glycohydrolase, enhances the G6PD inactivation under conditions where G6PD activity in control experiments is rather stable. (2) DEAE-cellulose adsorbs the bulk of both NADP glycohydrolase and NADP pyrophosphatase, whereas most of the G6PD-inactivating ability is unadsorbed. (3) Out of 37 liver extracts that were prepared, two were found to lack NADP pyrophosphatase. After removal of NADP glycohydrolase from these extracts by centrifugation, they were still found to inactivate G6PD. (4) Deproteinization of DEAE-cellulose supernatants results in a complete loss of G6PD-inactivating ability; moreover, kinetic experiments performed with the extracts lacking pyrophosphatase strongly support the view that the inactivating protein is an enzyme, although its mechanism is not clear. (5) NADP protects G6PD from inactivation and also reactivates the enzyme completely, thus supporting the view of some action of the inactivating protein on the G6PD-bound NADP.  相似文献   

12.
Fifty-two strains of Bacteroides fragilis were examined for their enzyme electrophoretic patterns of glucose-6-phosphate dehydrogenase (G6PDH) and malate dehydrogenase (MDH). All strains tested possessed high levels of both enzymes but the G6PDH reduced NADP whereas MDH was NAD-dependent. Twenty-seven strains produced single bands of both G6PDH and MDH. In all cases G6PDH migrated faster than MDH. Strains clustered by a single linkage algorithm were recovered in eight clusters at the 77% similarity level. The remaining 25 strains produced multiple bands of one or both enzymes. These were recovered in six clusters at the 72% similarity level using the same algorithm. The results of this study revealed considerable heterogeneity of enzyme patterns within B. fragilis.  相似文献   

13.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

14.
Addition of the plant hormone 24-epibrassinolide to culture media stimulated the growth of a freshwater diatom, Asterionella formosa. The hormone stimulated activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme from Calvin cycle, by 6-fold. Other key metabolic enzymes, phosphofructokinase and malate dehydrogenase were also stimulated but to a lesser extent. The activity of glucose-6-phosphate dehydrogenase, involved in the oxidative pentose phosphate pathway, also increased in the presence of the hormone but only under non reducing conditions. In cells stimulated by epibrassinolide, activated enzymes were sensitive to oxidized-DTT. GAPDH purified from cells grown in the presence of the hormone was not associated with a small protein of 8.5 kDa shown to be similar to CP12. Consequently the activity of GAPDH was no longer regulated by either oxidizing or reducing conditions. Among enzymes that, like GAPDH, responded positively to reducing agent were fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PDH). These enzymes were also sensitive to, and were negatively regulated by, oxidized-DTT. The activities in extracts from illuminated cells differed from those from darkened cells: FBPase, G6PDH and GAPDH, that were activated by DTT in darkened cells were no more activated in illuminated cells, but were oxidized by oxidized-DTT. Thus, oxidizing or reducing conditions mimic the conditions in dark and light, respectively. Unlike the other enzymes, phosphofructokinase (PFK) was inhibited by DTT but oxidized-DTT reversed this effect. The enzymes shown to be redox regulated in vitro by reduction/oxidation are very likely candidates for regulation in vivo by thioredoxins.  相似文献   

15.
S A Adediran 《Biochimie》1991,73(9):1211-1218
The steady-state kinetics of normal human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49) dimers were studied as a function of pH and temperature. Inhibition studies using glucosamine 6-phosphate, NADPH and p-hydroxymercuribenzoate (P-OHMB) were also carried out at pH 8.0. The existence of two binding sites on the enzyme with a transition from low to high affinity for NADP+ when NADP+ concentration is increased is indicated by the nonlinear Lineweaver-Burk plots and sigmoid kinetic patterns. NADPH inhibition was found to be competitive with respect to NADP+ and non-competitive with respect to glucose-6-phosphate. Logarithmic plot of Vmax against pH and inactivation by P-OHMB indicate the participation in the reaction mechanism of imidazolium group of histidine and sulhydryl groups. The initial velocity and product inhibition data gave results which are consistent with the dimeric enzyme following an ordered sequential mechanism. A possible random mechanism is ruled out by the inhibition results of glucosamine 6-phosphate.  相似文献   

16.
Thermal inactivation of glucose-6-phosphate dehydrogenase (G6PDH) and its conjugates with progesterone containing 3, 7 and 35 molecules of the modifier was studied in bidistilled water over a temperature range 35-47 degrees. At different temperatures and initial concentrations of the enzyme and its modified forms, thermal inactivation is described by the equation of the first order up to a significant degree of enzyme deactivation. The effective Kin values are decreased with the increase of the native G6PDH concentration and changed in a complicated manner with the increase of the conjugate concentration depending on the enzyme modification degree, which reflects a great role of the enzyme hydrophobicity in its inactivation. The role of hydrophobicity of the modified G6PDH in changes of its specific activity is discussed.  相似文献   

17.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

18.
Light affects the partitioning of glucose-6-phosphate dehydrogenase between thylakoids and stroma in the chloroplast. Illumination of intact chloroplasts changes the ratio between bound and free enzyme from approximately 1:1 to 1:2. Treatment with NADPH, inorganic phosphate, or high pH also results in release of the enzyme from isolated thylakoids.  相似文献   

19.
Seven structurally diverse flavonoids have been shown to decrease glucose-6-phosphate dehydrogenase (G6PDH) inactivation in 0.1 M phosphate buffer (pH 7.4), induced by exposure to a high temperature (44 degrees C), or by a low-frequency ultrasound (27 kHz, 60 Wt/cm2). The activity of the compounds was assessed by their ability to change effective first-order rate constants characterizing the total (thermal and ultrasonic), thermal, and ultrasonic inactivation of 2.5 nM G6PDH (k(in), k(in)* [Russian characters: see text] kin(us), respectively). The value dependences of these constants on flavonoid concentrations (0.01-50 microM) were obtained. Rank order of potency exhibited by the compounds in protecting G6PDH appeared as follows: hesperidin > morin > silibin > naringin = quercetin > kampferol > astragalin. The data obtained confirm the crucial role of free radicals formed in the field of ultrasonic cavitation (HO* and O2*-) in G6PDH inactivation in solutions.  相似文献   

20.
Farr TJ  Huppe HC  Turpin DH 《Plant physiology》1994,105(4):1037-1042
Extraction of Chlamydomonas reinhardtii CW-15 cells by rapid freezing and thawing demonstrates that the in vivo activity of the algal glucose-6-phosphate dehydrogenase (G6PDH) is inhibited by the presence of light and activated in the dark, whereas phosphoribulosekinase (PRK) is light activated and inhibited in the dark. The effects of darkening are reversed by incubation with dithiothreitol (DTT) and mimicked by chemical oxidants, indicating that, as in higher plants, reduction via the ferredoxin-thioredoxin system likely regulates these enzymes. The two enzymes varied in their sensitivity to reduction; the inclusion of 0.5 mM DTT during extraction inhibited G6PDH, whereas PRK required treatment with 40 mM DTT for 1 h to reach maximum activation. The activation change for both enzymes was nearly complete within the 1st min after cells were transferred between light and dark, but the level of activation was relative to the incident light at low intensities; G6PDH activity decreased with increasing light, whereas PRK became more active. The reductive inhibition of G6PDH saturated at very low light, whereas PRK activation kinetics closely followed the increase in photosynthetic oxygen evolution. These results indicate that light-driven redox modulation of G6PDH and PRK is more than an on/off switch, but acts to optimize the reduction and oxidation of carbon in the chloroplast in accordance with the supply of electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号