首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
The ubiquitin proteasome system is well recognized to be involved in mediating muscle atrophy in response to diverse catabolic conditions. To date, almost all of the genes that have been implicated are ubiquitin ligases. Although ubiquitination is modulated also by deubiquitinating enzymes, the roles of these enzymes in muscle wasting remains largely unexplored. In this article, the potential roles of deubiquitinating enzymes in regulating muscle size are discussed. This is followed by a review of the roles described for USP19, the deubiquitinating enzyme that has been most studied in muscle wasting. This enzyme is upregulated in muscle in many catabolic conditions and its inactivation leads to protection from muscle loss induced by stimuli that are common in many illnesses causing cachexia. It can regulate both protein synthesis and protein degradation as well as myogenesis, thereby modulating the key processes that control muscle mass. Roles for other deubiquitinating enzymes remain possible and to be explored.  相似文献   

2.
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.  相似文献   

3.
USP28 (ubiquitin-specific protease 28) is a deubiquitinating enzyme that has been implicated in the DNA damage response, the regulation of Myc signaling, and cancer progression. The half-life stability of major regulators of critical cellular pathways depends on the activities of specific ubiquitin E3 ligases that target them for proteosomal degradation and deubiquitinating enzymes that promote their stabilization. One function of the post-translational small ubiquitin modifier (SUMO) is the regulation of enzymatic activity of protein targets. In this work, we demonstrate that the SUMO modification of the N-terminal domain of USP28 negatively regulates its deubiquitinating activity, revealing a role for the N-terminal region as a regulatory module in the control of USP28 activity. Despite the presence of ubiquitin-binding domains in the N-terminal domain, its truncation does not impair deubiquitinating activity on diubiquitin or polyubiquitin chain substrates. In contrast to other characterized USP deubiquitinases, our results indicate that USP28 has a chain preference activity for Lys11, Lys48, and Lys63 diubiquitin linkages.  相似文献   

4.
Huntington's disease (HD), a neurodegenerative disorder caused by mutant huntingtin, is characterized by a catabolic phenotype. To determine the mechanisms underlying muscle wasting, we examined key signal transduction pathways governing muscle protein metabolism, apoptosis, and autophagy in R6/2 mice, a well-characterized transgenic model of HD. R6/2 mice exhibited increased adiposity, elevated energy expenditure, and decreased body weight and lean mass without altered food intake. Severe skeletal muscle wasting accounted for a majority of the weight loss. Protein synthesis was unexpectedly increased 19% in gastrocnemius muscle, which was associated with overactivation of basal and refeeding-stimulated mammalian target of rapamycin (mTOR) signaling, elevated Akt expression and Ser(473) phosphorylation, and decreased AMPK Thr(172) phosphorylation. Moreover, mRNA abundance of atrogenes muscle ring finger-1 and atrophy F-box, was markedly attenuated during fasting and refeeding, and the urinary excretion of 3-methylhistidine was decreased, arguing against a role for the ubiquitin proteasome-mediated proteolysis in the atrophy. In contrast, mRNA expression of several caspase genes and genes involved in the extrinsic or intrinsic apoptotic pathway, caspase-3/7, -8, and -9 activity, protein abundance of caspase-3 and -9, Fas, and Fadd, and cytochrome c release were elevated. Protein expressions of LC3B-I and -II, beclin-I, and atg5 and -7 in muscle were upregulated. Thus, mutant huntingtin in skeletal muscle results in increased protein synthesis and mTOR signaling, which is countered by activation of the apoptotic and autophagic pathways, contributing to an overall catabolic phenotype and the severe muscle wasting.  相似文献   

5.
AMPK (AMP-activated protein kinase)-related kinases regulate cell polarity as well as proliferation and are activated by the LKB1-tumour suppressor kinase. In the present study we demonstrate that the AMPK-related kinases, NUAK1 (AMPK-related kinase 5) and MARK4 (microtubule-affinity-regulating kinase 4), are polyubiquitinated in vivo and interact with the deubiquitinating enzyme USP9X (ubiquitin specific protease-9). Knockdown of USP9X increased polyubiquitination of NUAK1 and MARK4, whereas overexpression of USP9X inhibited ubiquitination. USP9X, catalysed the removal of polyubiquitin chains from wild-type NUAK1, but not from a non-USP9X-binding mutant. Topological analysis revealed that ubiquitin monomers attached to NUAK1 and MARK4 are linked by Lys(29) and/or Lys(33) rather than the more common Lys(48)/Lys(63). We find that AMPK and other AMPK-related kinases are also polyubiquitinated in cells. We identified non-USP9X-binding mutants of NUAK1 and MARK4 and find that these are hyper-ubiquitinated and not phosphorylated at their T-loop residue targeted by LKB1 when expressed in cells, suggesting that polyubiquitination may inhibit these enzymes. The results of the present study demonstrate that NUAK1 and MARK4 are substrates of USP9X and provide the first evidence that AMPK family kinases are regulated by unusual Lys(29)/Lys(33)-linked polyubiquitin chains.  相似文献   

6.
The inhibitors of apoptosis (IAPs) are critical regulators of apoptosis and other fundamental cellular processes. Many IAPs are RING domain-containing ubiquitin E3 ligases that control the stability of their interacting proteins. However, how IAP stability is regulated remains unclear. Here we report that USP19, a deubiquitinating enzyme, interacts with cellular IAP 1 (c-IAP1) and c-IAP2. Knockdown of USP19 decreases levels of both c-IAPs, whereas overexpression of USP19 results in a marked increase in c-IAP levels. USP19 effectively removes ubiquitin from c-IAPs in vitro, but it stabilizes c-IAPs in vivo mainly through deubiquitinase-independent mechanisms. The deubiquitinase activity is involved in the stabilization of USP19 itself, which is facilitated by USP19 self-association. Functionally, knockdown of USP19 enhances TNFα-induced caspase activation and apoptosis in a c-IAP1 and 2-dependent manner. These results suggest that the self-ubiquitin ligase activity of c-IAPs is inhibited by USP19 and implicate deubiquitinating enzymes in the regulation of IAP stability.  相似文献   

7.
SDS3 is a key component of the histone deacetylase (HDAC)-dependent Sin3A co-repressor complex, serving to maintain its HDAC activity. Here, we report both exogenous and endogenous functional interaction between deubiquitinating enzyme USP17 and human SDS3 by MALDI-TOF-MS, co-immunoprecipitation assay, and GST pull-down assay. In this study, we demonstrated that SDS3 readily undergoes endogenous polyubiquitination, which is associated specifically with Lys-63-branched polyubiquitin chains and not with Lys-48-branched polyubiquitin chains. Further, we also demonstrated that USP17 specifically deubiquitinates Lys-63-linked ubiquitin chains from SDS3 and regulates its biological functions. The deubiquitinating activity of USP17 on SDS3 negatively regulates SDS3-associated HDAC activity. The constitutive expression of USP17 and its substrate SDS3 was involved in the inhibition of anchorage-independent tumor growth and blocks cell proliferation, leading to apoptosis in cervical carcinoma cells. Furthermore, we showed that USP17 and SDS3 mutually interact with each other to regulate cancer cell viability. These data support the possibility that SDS3, being a substrate of USP17, may play an important role in developing a novel therapeutic means to inhibit specific HDAC activities in cancer.  相似文献   

8.
Paul PK  Kumar A 《Autophagy》2011,7(5):555-556
Skeletal muscle wasting is a major reason for morbidity and mortality in many chronic disease states, disuse conditions and aging. The ubiquitin-proteasome and autophagy-lysosomal systems are the two major proteolytic pathways involved in regulation of both physiological and pathological muscle wasting. Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an important adaptor protein involved in receptor-mediated activation of various signaling pathways in response to cytokines and bacterial products. TRAF6 also possesses E3 ubiquitin ligase activity causing lysine-63-linked polyubiquitination of target proteins. We have uncovered a novel role of TRAF6 in regulation of skeletal muscle mass. Muscle-wasting stimuli upregulate the expression, as well as the auto-ubiquitination, of TRAF6 leading to downstream activation of major catabolic pathways in skeletal muscle. Muscle-specific depletion of TRAF6 preserves skeletal muscle mass in a mouse model of cancer cachexia or denervation. Inhibition of TRAF6 also blocks the expression of the components of the ubiquitin-proteasome system (UPS) and autophagosome formation in atrophying skeletal muscle. While more investigations are required to understand its mechanisms of action in skeletal muscle, our results indicate that blocking TRAF6 activity can be used as a therapeutic approach to preserve skeletal muscle mass and function in different disease states and conditions.  相似文献   

9.
Ubiquitination regulates membrane events such as endocytosis, membrane trafficking and endoplasmic‐reticulum‐associated degradation (ERAD). Although the involvement of membrane‐associated ubiquitin‐conjugating enzymes and ligases in these processes is well documented, their regulation by ubiquitin deconjugases is less well understood. By screening a database of human deubiquitinating enzymes (DUBs), we have identified a putative transmembrane domain in ubiquitin‐specific protease (USP)19. We show that USP19 is a tail‐anchored ubiquitin‐specific protease localized to the ER and is a target of the unfolded protein response. USP19 rescues the ERAD substrates cystic fibrosis transmembrane conductance regulator (CFTR)ΔF508 and T‐cell receptor‐α (TCRα) from proteasomal degradation. A catalytically inactive USP19 was still able to partly rescue TCRα but not CFTRΔF508, suggesting that USP19 might also exert a non‐catalytic function on specific ERAD substrates. Thus, USP19 is the first example of a membrane‐anchored DUB involved in the turnover of ERAD substrates.  相似文献   

10.
11.
The conjugation of polyubiquitin to target proteins acts as a signal that regulates target stability, localization, and function. Several ubiquitin binding domains have been described, and while much is known about ubiquitin binding to the isolated domains, little is known with regard to how the domains interact with polyubiquitin in the context of full-length proteins. Isopeptidase T (IsoT/USP5) is a deubiquitinating enzyme that is largely responsible for the disassembly of unanchored polyubiquitin in the cell. IsoT has four ubiquitin binding domains: a zinc finger domain (ZnF UBP), which binds the proximal ubiquitin, a UBP domain that forms the active site, and two ubiquitin-associated (UBA) domains whose roles are unknown. Here, we show that the UBA domains are involved in binding two different polyubiquitin isoforms, linear and K48-linked. Using isothermal titration calorimetry, we show that IsoT has at least four ubiquitin binding sites for both polyubiquitin isoforms. The thermodynamics of the interactions reveal that the binding is enthalpy-driven. Mutation of the UBA domains suggests that UBA1 and UBA2 domains of IsoT interact with the third and fourth ubiquitins in both polyubiquitin isoforms, respectively. These data suggest that recognition of the polyubiquitin isoforms by IsoT involves considerable conformational mobility in the polyubiquitin ligand, in the enzyme, or in both.  相似文献   

12.
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.  相似文献   

13.
14.
15.
Zhang W  Tian QB  Li QK  Wang JM  Wang CN  Liu T  Liu DW  Wang MW 《PloS one》2011,6(10):e26297
Deubiquitinating enzymes (DUBs) regulate diverse cellular functions by their activity of cleaving ubiquitin from specific protein substrates. Ubiquitin-Specific Protease 46 (USP46) has recently been identified as a quantitative trait gene responsible for immobility in the tail suspension test and forced swimming test in mice. Mice with a lysine codon (Lys 92) deletion in USP46 exhibited loss of 'behavioral despair' under inescapable stresses in addition to abnormalities in circadian behavioral rhythms and the GABAergic system. However, whether this deletion affects enzyme activity is unknown. Here we show that USP46 has deubiquitinating enzyme activity detected by USP cleavage assay using GST-Ub52 as a model substrate. Interestingly, compared to wild type, the Lys 92 deletion mutant resulted in a decreased deubiquitinating enzyme activity of 27.04%. We also determined the relative expression levels of Usp46 in rat tissues using real-time RT-PCR. Usp46 mRNA was expressed in various tissues examined including brain, with the highest expression in spleen. In addition, like rat USP46, both human and mouse USP46 are active toward to the model substrate, indicating the USP cleavage assay is a simple method for testing the deubiquitinating enzyme activity of USP46. These results suggest that the Lys 92 deletion of USP46 could influence enzyme activity and thereby provide a molecular clue how the enzyme regulating the pathogenesis of mental illnesses.  相似文献   

16.
Muscle atrophy is a prominent feature of catabolic conditions and in animal models of these conditions there is accelerated muscle proteolysis that is dependent on the ubiquitin-proteasome system. However, ubiquitin system cannot degrade actomyosin or myofibrils even though it rapidly degrades actin or myosin. We identified caspase-3 as the initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils. In rodent models of catabolic conditions, we find that caspase-3 is activated to cleave muscle proteins and actomyosin to fragments that are rapidly degraded by the ubiquitin system. This initial proteolytic step in muscle can be recognized because it leaves a footprint of a characteristic 14-kDa actin band. Stimulation of caspase-3 activity depends on activation of phosphatidylinositol 3-kinase. When we suppressed this enzyme in muscle cells, protein breakdown increased as did the expression of caspase-3. In addition, there was increased expression of E3-ubiquitin-conjugating enzymes that are involved in muscle proteolysis, atrogin-1/MAFbx and MuRF1. Thus, when phosphatidylinositol 3-kinase activity is low in muscle cells or rat muscle, both caspase-3 and the ubiquitin-proteasome system are stimulated to degrade protein. Additional investigations will be needed to define the cell signaling processes that activate muscle proteolysis in uremia and catabolic conditions.  相似文献   

17.
Selective proteolysis is an important regulatory mechanism in all cells. In eukaryotes, this process gains specificity by tagging proteins with the small protein ubiquitin. K48 linked polyubiquitin chains of four and more ubiquitin moieties target proteins for hydrolysis by the proteasome. Prior to degradation the polyubiquitin chain is removed from the protein, cleaved into single units, and recycled. The deubiquitinating enzyme Ubp14 is an important catalyst of this process. Mutants of Ubp14 had been shown to accumulate non-cleaved oligo- and polyubiquitin chains, which resulted in inhibition of overall ubiquitin-proteasome linked proteolysis as well as in inhibition of degradation of some known substrates. Here we show that accumulation of ubiquitin chains due to defective Ubp14 does not uniformly lead to inhibition of ubiquitin-proteasome linked protein degradation. Instead, inhibition of degradation depends on the substrate tested. The results indicate the existence of different paths through which proteins enter the proteasome.  相似文献   

18.
19.
Ubiquitin binding proteins regulate the stability, function, and/or localization of ubiquitinated proteins. Here we report the crystal structures of the zinc-finger ubiquitin binding domain (ZnF UBP) from the deubiquitinating enzyme isopeptidase T (IsoT, or USP5) alone and in complex with ubiquitin. Unlike other ubiquitin binding domains, this domain contains a deep binding pocket where the C-terminal diglycine motif of ubiquitin is inserted, thus explaining the specificity of IsoT for an unmodified C terminus on the proximal subunit of polyubiquitin. Mutations in the domain demonstrate that it is required for optimal catalytic activation of IsoT. This domain is present in several other protein families, and the ZnF UBP domain from an E3 ligase also requires the C terminus of ubiquitin for binding. These data suggest that binding the ubiquitin C terminus may be necessary for the function of other proteins.  相似文献   

20.
The attachment of lysine 48 (Lys(48))-linked polyubiquitin chains to proteins is a universal signal for degradation by the proteasome. Here, we report that long Lys(48)-linked chains are resistant to many deubiquitinating enzymes (DUBs). Representative enzymes from this group, Ubp15 from yeast and its human ortholog USP7, rapidly remove mono- and diubiquitin from substrates but are slow to remove longer Lys(48)-linked chains. This resistance is lost if the structure of Lys(48)-linked chains is disrupted by mutation of ubiquitin or if chains are linked through Lys(63). In contrast to Ubp15 and USP7, Ubp12 readily cleaves the ends of long chains, regardless of chain structure. We propose that the resistance to many DUBs of long, substrate-attached Lys(48)-linked chains helps ensure that proteins are maintained free from ubiquitin until a threshold of ubiquitin ligase activity enables degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号