首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Activation of mast cells by bridging of IgE-receptors or concanavalin A (Con A) results in a rapid initial rise and fall in cyclic AMP (cAMP) levels followed by a second rise in cAMP levels and histamine release (Sullivan, T. et al. (1976) J. Immunol. 117, 713-716; Lewis, R.A. et al. (1979) J. Immunol. 123, 1663-1668; Ishizaka, T. et al. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6812-6816). trans-4-Guanidinomethylcyclohexanecarboxylic acid 4-tert-butylphenyl ester (GMCHA-OPhBut), a strong trypsin inhibitor and an anti-allergic agent (Muramatu, M. et al. (1982) Hoppe-Seyler's Z. Physiol. Chem. 363, 203-211; Takei, M. et al. Agents Actions, in press), strongly and dose-dependently inhibited the initial and second rises in cAMP levels, and release of histamine from rat mast cells by Con A, anti-IgE and antigen. Addition of GMCHA-OPhBut after the initial rise in cAMP inhibited the second rise in cAMP and histamine release. These results suggested a possible participation of a trypsin-like proteinase, probably pH 7 tryptase present in rat mast cells, in the activation of adenylate cyclase by the above secretagogues, and the initial rise in cAMP was not directly related to the latter events. The second rise in cAMP is induced by prostaglandin D2 (PGD2), a metabolic product of arachidonic acid. PGD2 elevated the cAMP levels in mast cells whereas no histamine was secreted. GMCHA-OPhBut did not inhibit the increase in cAMP by PGD2. Therefore, the strong inhibitory effect of GMCHA-OPhBut on the second rise in cAMP might depend on the inhibition of an earlier process than the activation of adenylate cyclase by PGD2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

3.
[3H]Methyl group incorporation and histamine secretion in rat mast cells induced by anti-IgE and con A were strongly inhibited by trans-4-guanidinomethylcyclohexanecarboxylic acid 4-tert-butylphenyl ester (GMCHA-OPhBut), a strong and specific inhibitor for pH 7 tryptase (Muramatsu et al. (1988) Biol. Chem. Hoppe-Seyler 369, 617-625) which is present in rat mast cells. The IC50s for these events were of the order of 10(-6) M. Addition of GMCHA-OPhBut after the maximal increase in [3H]methyl group incorporation in rat mast cells activated by con A and anti-IgE induced rapid reduction of the methylated phospholipid, and the later histamine release was strongly suppressed. Mast cells were prepared with Mg2+-free Tyrode-HEPES solution, and challenged with anti-IgE with or without Mg2+. With Mg2+, [3H]methyl group incorporation was enhanced, and histamine was secreted time-dependently. Without Mg2+, [3H]methyl group incorporation fell to one-third, whereas histamine secretion was not affected. These results were incompatible with the above results. From these results it was strongly suggested that a trypsin-like protease, probably pH 7 tryptase, is involved not only in the early events, such as activation of phosphatidylethanolamine methyltransferase I and/or II, but also in the late events such as histamine release, and phospholipid methylation is not associated with histamine secretion.  相似文献   

4.
《The Journal of cell biology》1988,107(6):2533-2539
A broad range of membrane functions, including endocytosis and exocytosis, are strongly inhibited during mitosis. The underlying mechanisms are unclear, however, but will probably be important in relation to the mitotic cycle and the regulation of surface phenomena generally. A major unanswered question is whether membrane signal transduction is altered during mitosis; suppression of an intracellular calcium [( Ca2+]i) transient could inhibit exocytosis; [Ca2+]i elevation could disassemble the mitotic spindle. Activation of the histamine H1 receptor interphase in HeLa cells is shown here by Indo-1 fluorescence to produce a transient elevation of [Ca2+]i. The [Ca2+]i transient consists of an initial sharp rise that is at least partially dependent on intracellular calcium followed by an elevated plateau that is absolutely dependent on extracellular calcium. The [Ca2+]i transient is completely suppressed by preincubation with the tumor promoter, phorbol myristate acetate, but is unaffected by preincubation with pertussis toxin (islet-activating protein). In mitotic (metaphase- arrested) HeLa cells, the [Ca2+]i transient is largely limited to the initial peak. Measurement of 45Ca2+ uptake shows that it is stimulated by histamine in interphase cells, but not in mitotics. We conclude that the histamine-stimulated generation of the second messenger, [Ca2+]i, in mitotic cells is limited by failure to activate a sustained calcium influx. The initial phase of calcium mobilization from intracellular stores is comparable to that in interphase cells. Hormone signal transduction thus appears to be altered during mitosis.  相似文献   

5.
The aim of this study was to determine whether the increase in cytosolic free Ca2+ concentration ([Ca2+]i) in response to antigen (aggregated ovalbumin) on IgE-primed 2H3 cells was sufficient to account for exocytosis. When the [Ca2+]i responses to antigen and the Ca2+ ionophore A23187 were compared, A23187 was much less effective at releasing histamine at equivalent [Ca2+]i increases, and little or no stimulated histamine release occurred with A23187 concentrations that matched the [Ca2+]i response to antigen concentrations that stimulated maximal histamine release. The [Ca2+]i response to antigen is not, therefore, sufficient to account for exocytosis, although extracellular Ca2+ is necessary to initiate both the [Ca2+]i response and histamine release: the antigen must generate an additional, unidentified, signal that is required for exocytosis. To determine whether this signal was the activation of protein kinase C, the effects of the phorbol ester 12-0-tetradecanoyl phorbol 13-acetate (TPA) on the responses to antigen were examined. TPA blocked the antigen-induced [Ca2+]i response and the release of inositol phosphates but had little effect on histamine release and did not stimulate exocytosis by itself. The unidentified signal from the antigen is therefore distinct from the activation of protein kinase C and is generated independently of the [Ca2+]i response or the release of inositol phosphates. Taken together with other data that imply that there is very little activation of protein kinase C by antigen when the rate of histamine release is maximal, it is concluded that the normal exocytotic response to antigen requires the synergistic action of the [Ca2+]i signal together with an unidentified signal that is not mediated by protein kinase C.  相似文献   

6.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

7.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

8.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

9.
The addition of histamine to macrophage-like P388D1 cells resulted in a dose-dependent increase in intracellular calcium [Ca2+]i measured by fura-2 in single cells. The maximum level of [Ca2+]i was obtained by addition of 1 x 10(-4) M histamine. The increase was primarily due to release from the intracellular store. The addition of an H1 specific antagonist pyrilamine before histamine treatment inhibited the increase reversibly, while an H2 specific antagonist cimetidine had no inhibitory effect. Histamine also resulted in a dose-dependent increase in cGMP but not in cAMP. These data suggest the existence of histamine H1 receptors in these cells and histamine may have some biological effect on the function of macrophages via [Ca2+]i and cGMP as the second messengers.  相似文献   

10.
Glucose raises cytosolic free calcium in the rat pancreatic islets   总被引:1,自引:0,他引:1  
Cytosolic free calcium [( Ca2+]i) was measured using fura 2 in the whole pancreatic islets obtained from male Wistar rats by collagenase dispersion. The pattern of change of [Ca2+]i in response to high glucose, potassium (K+) depolarization or the removal of extracellular calcium was compared with the temporal profile of insulin secretion. Twenty-nine mM glucose produced a gradual increase in [Ca2+]i with approximately 1.5 min of latency period. It remained elevated until the end of observation period (25 min) during which period the first phase of insulin secretion ceased and the second phase of secretion gradually increased. Depolarizing concentration of KCl also produced an elevation of [Ca2+]i, without detectable latency period, which lasted at a sustained level for the entire observation period (30 min). KCl caused a rapid increase of insulin secretion followed by a gradually decreasing level of secretion. Elevated [Ca2+]i and insulin secretion in response to high glucose returned to the basal level when external calcium was removed by the addition of EGTA. We conclude that high glucose and K+ depolarization raise [Ca2+]i in the pancreatic islet. However, the elevation of [Ca2+]i and insulin secretion are not always correlated in the later period of stimulation.  相似文献   

11.
Phorbol esters, potent activators of protein kinase C (PKC), greatly enhance the release of arachidonic acid and its metabolites (TXA2, HETES, HHT) by Ca2+ ionophores in human platelets. In this paper, we report the relationship between intracellular Ca2+ mobilization and external calcium influx into platelets and the ability of PMA plus A23187 to promote thromboxane A2 (TXA2) synthesis. The enhanced levels of TXA2 due to the synergistic stimulation of the platelets with A23187 and phorbol esters are not affected significantly by the presence of external Ca2+ or the calcium-chelator EGTA. PKC inhibitors, staurosporine and sphingosine, abolished phorbol myristate acetate (PMA) potentiation of TXA2 production which strongly supports the role of PKC in the synergism. Platelet aggregation is more sensitive to PMA and external calcium than TXA2 formation. PMA increased TXA2 production as much as 4-fold at low ionophore concentrations. The A23187-induced rise in [Ca2+]i was reduced by pretreatment of human platelets with phorbol esters, both in the presence and absence of EGTA, and staurosporine reversed this inhibitory effect. These results indicate that the synergistic stimulation of TXA2 production by A23187 and phorbol esters is promoted by intracellular Ca2+ mobilization and not by external calcium influx. Our data also suggest that PKC is involved in the regulation of Ca2+ mobilization from some specific intracellular stores and that PKC may also stimulate the Ca(2+)-dependent phospholipase A2 at suboptimal Ca2+i concentrations.  相似文献   

12.
Previous studies demonstrated that Ca2+ ionophores augment the pancreatic enzyme secretion caused by phorbol esters. The present study was performed to determine the nature of the cellular Ca2+ effects responsible for the augmentation. Relatively low concentrations (0.3-1.0 microM) of the nonfluorescent Ca2+ ionophore, 4-bromo-A23187 (Br-A23187), did not measurably increase free cytosolic Ca2+ ([Ca2+]i) and caused little or no enzyme release from guinea pig pancreatic acini. However, these concentrations of Br-A23187 augmented the amylase release caused by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). This augmentation occurred in the absence of extracellular Ca2+ as long as the intracellular agonist-sensitive pool contained Ca2+. Greater concentrations of Br-A23187 (3-10 microM) alone caused transient increases in [Ca2+]i and transient increases in amylase release. Although not resulting in an increase in [Ca2+]i, the low concentrations of Br-A23187 caused release of Ca2+ from the intracellular agonist-sensitive pool. These results suggest that Ca2+ mediates enzyme release by two distinct mechanisms in the pancreatic acinar cell. First, an increase in [Ca2+]i alone mediates enzyme release. Second, Ca2+ release from the agonist-sensitive pool not resulting in a measurable increase in [Ca2+]i augments enzyme release stimulated by a phorbol ester. The second effect of Ca2+ may be due to a small localized change in cell Ca2+ or an induction of cytosolic Ca2+ oscillations.  相似文献   

13.
The role of protein Kinase C activators in the process of histamine secretion has been studied in rat peritoneal mast cells purified by a density gradient. TPA (12-O-tetradecanoyl-phorbol-13-acetate), a tumor promoter which activates protein kinase C, induced histamine release in the presence and in the absence of external free Ca2+. TPA and the calcium ionophore A23187 have an additive effect on secretion. Histamine release induced by TPA is energy-dependent. In the presence of 100 microM KCN secretion was moderately inhibited, however when glucose was removed from the incubation medium TPA-induced histamine release in the presence of KCN was strongly depressed.  相似文献   

14.
N Takasu  T Yamada  Y Shimizu 《FEBS letters》1987,225(1-2):43-47
Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol 13-acetate (TPA) and calcium ionophore A23187 increase cytoplasmic free calcium ([Ca2+]i) and stimulate arachidonic acid release and production of PGE2 and 6-keto PGF1 alpha, an end metabolite of PGI2, in cultured porcine thyroid cells. Addition of EGF, TPA or A23187 to the cells loaded with fura-2, a fluorescent Ca2+ indicator, causes an immediate increase in [Ca2+]i, which is the earliest event after mitogen stimulation. This [Ca2+]i response occurs immediately, reaching a maximum within several seconds. EGF, TPA and A23187 stimulate arachidonic acid release and PGE2 and 6-keto PGF1 alpha production; the maximum effects are obtained after 2-4 h incubation. EGF, TPA and A23187 increase [Ca2+]i and then stimulate arachidonic acid release and PG production.  相似文献   

15.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

16.
Changes in intracellular Ca2+, [Ca2+]i, were measured in control and chondroitin ABC lyase-pretreated platelets. [Ca2+]i was measured with the fluorescent calcium probe Quin2. Chondroitin ABC lyase removed chondroitin 4-sulfate from the platelet surface without inducing shape change or release of serotonin. Compared to similarly prepared controls, enzyme treated platelets showed an increase of [Ca2+]i in response to stimulation by various agonists at high (1 mM) extracellular Ca2+ concentration. At low Ca2+ in the medium (1 mM EGTA), such platelets responded to agonists with a decreased rise in [Ca2+]i compared to the controls. These studies indicate that selective removal of glycosaminoglycans may sensitize platelets to the action of platelet aggregating agents. In addition, glycosaminoglycans may have a calcium storage function.  相似文献   

17.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

18.
Fura-2 fluorescence in single rat basophilic leukemia cells was monitored to study the rise in intracellular free ionized calcium ([Ca2+]i) produced by aggregation of immunoglobulin E receptors. Repetitive transient increases in [Ca2+]i were induced by antigen stimulation and were measured using digital video imaging microscopy at high time resolution. The [Ca2+]i oscillations were not dependent upon changes in the membrane potential of the cells and were observed in cells stimulated with antigen either with or without extracellular Ca2+. Transient oscillations in [Ca2+]i were also observed when calcium influx was blocked with La3+. These results suggested that during antigen stimulation of cells under normal physiological conditions, release of Ca2+ from intracellular stores makes an important contribution to the initial increase in [Ca2+]i. Oscillations in [Ca2+]i are not induced by elevating [Ca2+]i with the calcium ionophore ionomycin. Mitochondrial calcium buffering is not required for [Ca2+]i oscillations to occur. The results show that rat basophilic leukemia cells have significant stores of calcium and that release of calcium from these stores can participate in both the initial rise and the oscillations in [Ca2+]i.  相似文献   

19.
To determine the role of free cytosolic calcium ([Ca+2]i) in stimulated enzyme secretion from exocrine pancreas, we determined the effects of various pancreatic secretagogues on [Ca+2]i and amylase release in dispersed acini from the guinea pig pancreas. Cholecystokinin-octapeptide (CCK-OP), carbachol, and bombesin, but not vasoactive intestinal peptide, stimulated rapid increases in [Ca+2]i from 100 to 600-800 nM that were independent of extracellular calcium. The increases in [Ca+2]i were transient (lasting less than 5 min) and correlated with an initial rapid phase of amylase release. After 5 min, secretagogue-stimulated amylase release occurred at basal [Ca+2]i. Carbachol pretreatment of the acini abolished the effects of CCK-OP and bombesin on [Ca+2]i and the initial rapid phase of amylase release. 4 beta-phorbol 12-myristate 13-acetate (PMA) had no effect on [Ca+2]i but stimulated an increase in amylase release. The addition of CCK-OP or A23187 to PMA-stimulated acini caused an increase in [Ca+2]i and PMA-stimulated amylase release only during the first 5 min after addition of these agents. These results indicate that CCK-OP, carbachol, and bombesin release calcium from an intracellular pool, resulting in a transient increase in [Ca+2]i and that this increase in [Ca+2]i mediates enzyme secretion during the first few minutes of incubation. The results with PMA suggest that secretagogue-stimulated secretion not mediated by increased [Ca+2]i (sustained secretion) is mediated by 1,2-diacylglycerol.  相似文献   

20.
Trains of action potentials evoked rises in presynaptic Ca2+ concentration ([Ca2+]i) at the squid giant synapse. These increases in [Ca2+]i were spatially nonuniform during the trains, but rapidly equilibrated after the trains and slowly declined over hundreds of seconds. The trains also elicited synaptic depression and augmentation, both of which developed during stimulation and declined within a few seconds afterward. Microinjection of the Ca2+ buffer EGTA into presynaptic terminals had no effect on transmitter release or synaptic depression. However, EGTA injection effectively blocked both the persistent Ca2+ signals and augmentation. These results suggest that transmitter release is triggered by a large, brief, and sharply localized rise in [Ca2+]i, while augmentation is produced by a smaller, slower, and more diffuse rise in [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号