首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
Macrophage migration inhibitory factor (MIF) is pleiotropic cytokine that has multiple effects in many inflammatory and immune diseases. This study reveals a potential role of MIF in acute kidney injury (AKI) in patients and in kidney ischemic reperfusion injury (IRI) mouse model in MIF wild‐type (WT) and MIF knockout (KO) mice. Clinically, plasma and urinary MIF levels were largely elevated at the onset of AKI, declined to normal levels when AKI was resolved and correlated tightly with serum creatinine independent of disease causes. Experimentally, MIF levels in plasma and urine were rapidly elevated after IRI‐AKI and associated with the elevation of serum creatinine and the severity of tubular necrosis, which were suppressed in MIF KO mice. It was possible that MIF may mediate AKI via CD74/TLR4‐NF‐κB signalling as mice lacking MIF were protected from AKI by largely suppressing CD74/TLR‐4‐NF‐κB associated renal inflammation, including the expression of MCP‐1, TNF‐α, IL‐1β, IL‐6, iNOS, CXCL15(IL‐8 in human) and infiltration of macrophages, neutrophil, and T cells. In conclusion, our study suggests that MIF may be pathogenic in AKI and levels of plasma and urinary MIF may correlate with the progression and regression of AKI.  相似文献   

2.
BackgroundCisplatin-induced acute kidney injury (AKI) is a severe clinical complication with no satisfactory therapies in the clinic. Tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1) plays a vital role in both inflammation and metabolism. However, the TRAF1 effect in cisplatin induced AKI needs to be evaluated.MethodsWe observed the role of TRAF1 in eight-week-old male mice and mouse proximal tubular cells both treated with cisplatin by examining the indicators associated with kidney injury, apoptosis, inflammation, and metabolism.ResultsTRAF1 expression was decreased in cisplatin-treated mice and mouse proximal tubular cells (mPTCs), suggesting a potential role of TRAF1 in cisplatin-associated kidney injury. TRAF1 overexpression significantly alleviated cisplatin-triggered AKI and renal tubular injury, as demonstrated by reduced serum creatinine (Scr) and urea nitrogen (BUN) levels, as well as the ameliorated histological damage and inhibited upregulation of NGAL and KIM-1. Moreover, the NF-κB activation and inflammatory cytokine production enhanced by cisplatin were significantly blunted by TRAF1. Meanwhile, the increased number of apoptotic cells and enhanced expression of BAX and cleaved Caspase-3 were markedly decreased by TRAF1 overexpression both in vivo and vitro. Additionally, a significant correction of the metabolic disturbance, including perturbations in energy generation and lipid and amino acid metabolism, was observed in the cisplatin-treated mice kidneys.ConclusionTRAF1 overexpression obviously attenuated cisplatin-induced nephrotoxicity, possibly by correcting the impaired metabolism, inhibiting inflammation, and blocking apoptosis in renal tubular cells.General significanceThese observations emphasize the novel mechanisms associated to metabolism and inflammation of TRAF1 in cisplatin-induced kidney injury.  相似文献   

3.
Acute kidney injury (AKI) is a serious complication after liver transplantation. Currently there are no validated biomarkers available for early diagnosis of AKI. The current study was carried out to determine the usefulness of the recently identified biomarkers netrin-1 and semaphorin 3A in predicting AKI in liver transplant patients. A total of 63 patients’ samples were collected and analyzed. AKI was detected at 48 hours after liver transplantation using serum creatinine as a marker. In contrast, urine netrin-1 (897.8±112.4 pg/mg creatinine), semaphorin 3A (847.9±93.3 pg/mg creatinine) and NGAL (2172.2±378.1 ng/mg creatinine) levels were increased significantly and peaked at 2 hours after liver transplantation but were no longer significantly elevated at 6 hours after transplantation. The predictive power of netrin-1, as demonstrated by the area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 24 hours after liver transplantation was 0.66, 0.57 and 0.59, respectively. The area under the curve for diagnosis of AKI was 0.63 and 0.65 for semaphorin 3A and NGAL at 2 hr respectively. Combined analysis of two or more biomarkers for simultaneous occurrence in urine did not improve the AUC for the prediction of AKI whereas the AUC was improved significantly (0.732) only when at least 1 of the 3 biomarkers in urine was positive for predicting AKI. Adjusting for BMI, all three biomarkers at 2 hours remained independent predictors of AKI with an odds ratio of 1.003 (95% confidence interval: 1.000 to 1.006; P = 0.0364). These studies demonstrate that semaphorin 3A and netrin-1 can be useful early diagnostic biomarkers of AKI after liver transplantation.  相似文献   

4.
Acute kidney injury (AKI) contributes greatly to morbidity and mortality in critically ill adults and children. Patients with AKI who subsequently develop lung injury are known to suffer worse outcomes compared with patients with lung injury alone. Isolated experimental kidney ischemia alters distal lung water balance and capillary permeability, but the effects of such an aberration on subsequent lung injury are unknown. We present a clinically relevant two-hit murine model wherein a proximal AKI through bilateral renal ischemia (30 min) is followed by a subsequent acute lung injury (ALI) via intratracheal LPS endotoxin (50 μg at 24 h after surgery). Mice demonstrated AKI by elevation of serum creatinine and renal histopathological damage. Mice with ALI and preexisting AKI had increased lung neutrophilia in bronchoalveolar lavage fluid and by myeloperoxidase activity over Sham-ALI mice. Additionally, lung histopathological damage was greater in ALI mice with preexisting AKI than Sham-ALI mice. There was uniform elevation of monocyte chemoattractant protein-1 in kidney, serum, and lung tissue in animals with both AKI and ALI over those with either injury alone. The additive lung inflammation after ALI with antecedent AKI was abrogated in MCP-1-deficient mice. Taken together, our two-hit model demonstrates that kidney injury may prime the lung for a heightened inflammatory response to subsequent injury and MCP-1 may be involved in this model of kidney-lung cross talk. The model holds clinical relevance for patients at risk of lung injury after ischemic injury to the kidney.  相似文献   

5.
Sepsis-induced acute kidney injury (AKI) is a frequent complication of critically ill patients and leads to high mortality rates. The specificity of currently available urinary biomarkers for AKI in the context of sepsis is questioned. This study aimed to discover urinary biomarkers for septic AKI by contemporary shotgun proteomics in a mouse model for sepsis and to validate these in individual urine samples of mice and human septic patients with and without AKI. At 48 h after uterine ligation and inoculation of Escherichia coli, aged mice (48 weeks) became septic. A subgroup developed AKI, defined by serum creatinine, blood urea nitrogen, and renal histology. Separate pools of urine from septic mice with and without AKI mice were collected during 12 h before and between 36-48 h after infection, and their proteome compositions were quantitatively compared. Candidate biomarkers were validated by Western blot analysis of urine, plasma, and renal tissue homogenates from individual mice, and a limited number of urine samples from human septic patients with and without AKI. Urinary neutrophil gelatinase-associated lipocalin, thioredoxin, gelsolin, chitinase 3-like protein 1 and -3 (CHI3L3) and acidic mammalian chitinase were the most distinctive candidate biomarkers selected for septic AKI. Both neutrophil gelatinase-associated lipocalin and thioredoxin were detected in urine of septic mice and increased with severity of AKI. Acidic mammalian chitinase was only present in urine of septic mice with AKI. Both urinary chitinase 3-like protein 1 and -3 were only detected in septic mice with severe AKI. The human homologue chitinase 3-like protein 1 was found to be more excreted in urine from septic patients with AKI than without. In summary, urinary chitinase 3-like protein 1 and -3 and acidic mammalian chitinase discriminated sepsis from sepsis-induced AKI in mice. Further studies of human chitinase proteins are likely to lead to additional insights in septic AKI.  相似文献   

6.
Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine (1 mg/kg) or GTS-21 (4 mg/kg) significantly abrogated renal leukocyte infiltration (by 40%) and attenuated kidney injury. These renoprotective effects were accompanied by reduced systemic and localized kidney inflammation during LPS-induced AKI. Consistent with these observations, nicotinic agonist treatment significantly decreased renal IκBα degradation and NFκB activation during LPS-induced AKI. Treatment of human kidney cells with nicotinic agonists, an NFκB inhibitor (Bay11), or a proteasome inhibitor (MG132) effectively inhibited their inflammatory responses following stimulation with LPS or TNFα. Renal proteasome activity, a major regulator of NFκB-mediated inflammation, was enhanced by approximately 50% during LPS-induced AKI and elevated proteasome activity was significantly blunted by nicotinic agonist administration in vivo. Taken together, our results identify enhanced renal proteasome activity during LPS-induced AKI and the suppression of both proteasome activity and inflammation by nicotinic agonists to attenuate LPS-induced kidney injury.  相似文献   

7.
Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti-inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin-induced AKI mouse model and a co-culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti-inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down-regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down-regulated the expression of the tubular injury molecule Tim-1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α), protein levels of inflammatory signals (iNOS and NF-κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co-culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle-mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.  相似文献   

8.

Background

Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney function are within reference range. We studied the sensitivity and specificity of NGAL as an AKI marker at different degrees of renal ischemia.

Methods

Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to control operation or no operation, and AKI was evaluated 1 day later by histology, immunohistochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA expression.

Results

A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control operation, while it was similar in the non and control-operated groups.

Conclusions

These results suggest that urinary NGAL excretion and especially ratio of urine to plasma NGAL are sensitive and specific markers of subclinical acute kidney injury in mice.  相似文献   

9.
Previous studies implicated the anti-inflammatory potential of the adenosine 2B receptor (A2BAR). A2BAR activation is achieved through adenosine, but this is limited by its very short t(1/2). To further define alternative adenosine signaling, we examined the role of netrin-1 during acute inflammatory peritonitis. In this article, we report that animals with endogenous repression of netrin-1 (Ntn1(+/-)) demonstrated increased cell count, increased peritoneal cytokine concentration, and pronounced histological changes compared with controls in a model of zymosan A peritonitis. Exogenous netrin-1 significantly decreased i.p. inflammatory changes. This effect was not present in animals with deletion of A2BAR (A2BAR(-/-)). A2BAR(-/-) animals demonstrated no change in cell count, i.p. cytokine concentration, or histology in response to netrin-1 injection. These data strengthen the role of netrin-1 as an immunomodulatory protein exerting its function in dependence of the A2BAR and further define alternative adenosine receptor signaling.  相似文献   

10.
Acute kidney injury (AKI) has become a common disorder with a high risk of morbidity and mortality, which remains major medical problem without reliable and effective therapeutic intervention. Apoptosis‐stimulating protein two of p53 (ASPP2) is a proapoptotic member that belongs to p53 binding protein family, which plays a key role in regulating apoptosis and cell growth. However, the role of ASPP2 in AKI has not been reported. To explore the role of ASPP2 in the progression of AKI, we prepared an AKI mouse model induced by ischaemia reperfusion (I/R) in wild‐type (ASPP2+/+) mice and ASPP2 haploinsufficient (ASPP2+/?) mice. The expression profile of ASPP2 were examined in wild‐type mice. The renal injury, inflammation response, cellular apoptosis and autophagic pathway was assessed in ASPP2+/+ and ASPP2+/? mice. The renal injury, inflammation response and cellular apoptosis was analysed in ASPP2+/+ and ASPP2+/? mice treated with 3‐methyladenine or vehicle. The expression profile of ASPP2 showed an increase at the early stage while a decrease at the late stage during renal injury. Compared with ASPP2+/+ mice, ASPP2 deficiency protected mice against renal injury induced by I/R, which mainly exhibited in slighter histologic changes, lower levels of blood urea nitrogen and serum creatinine, and less apoptosis as well as inflammatory response. Furthermore, ASPP2 deficiency enhanced autophagic activity reflecting in the light chain 3‐II conversion and p62 degradation, while the inhibition of autophagy reversed the protective effect of ASPP2 deficiency on AKI. These data suggest that downregulation of ASPP2 can ameliorate AKI induced by I/R through activating autophagy, which may provide a novel therapeutic strage for AKI.  相似文献   

11.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

12.
Haptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction. Renal cortical Hp gene induction was determined either 4-72 h or 1-3 wk later by measuring Hp mRNA and protein levels. Relative renal vs. hepatic Hp gene induction during endotoxemia was also assessed. Each form of AKI induced striking and sustained Hp mRNA increases, leading to ~10- to 100-fold renal Hp protein elevations (ELISA; Western blot). Immunohistochemistry, and isolated proximal tubule assessments, indicated that the proximal tubule was the dominant (if not only) site of the renal Hp increases. Corresponding urinary and plasma Hp elevations were surrogate markers of this response. Endotoxemia evoked 25-fold greater Hp mRNA increases in kidney vs. liver, indicating marked renal Hp gene reactivity. Clinical relevance of these findings was suggested by observations that urine samples from 16 patients with established AKI had statistically higher (~12×) urinary Hp levels than urine samples from either normal subjects or from 15 patients with chronic kidney disease. These AKI-associated urinary Hp increases mirrored those seen for urinary neutrophil gelatinase-associated lipoprotein, a well accepted AKI biomarker gene. In summary, these studies provide the first evidence that AKI evokes rapid, marked, and sustained induction of the proximal tubule Hp gene. Hp's known antioxidant, as well as its protean pro- and anti-inflammatory, actions imply potentially diverse effects on the evolution of acute tubular injury.  相似文献   

13.
Acute kidney injury (AKI) is a clinical condition that is associated with high morbidity and mortality. Inflammation is reported to play a key role in AKI. Although the M2 macrophages exhibit antimicrobial and anti-inflammatory activities, their therapeutic potential has not been evaluated for AKI. This study aimed to investigate the protective effect of peritoneal M2 macrophage transplantation on AKI in mice. The macrophages were isolated from peritoneal dialysates of mice. The macrophages were induced to undergo M2 polarization using interleukin (IL)-4/IL-13. AKI was induced in mice by restoring the blood supply after bilateral renal artery occlusion for 30 minutes. The macrophages were injected into the renal cortex of mice. The changes in renal function, inflammation and tubular proliferation were measured. The M2 macrophages were co-cultured with the mouse primary proximal tubular epithelial cells (PTECs) under hypoxia/reoxygenation conditions in vitro. The PTEC apoptosis and proliferation were analysed. The peritoneal M2 macrophages effectively alleviated the renal injury and inflammatory response in mice with ischaemia-reperfusion injury (IRI) and promoted the PTEC proliferation in vivo and in vitro. These results indicated that the peritoneal M2 macrophages ameliorated AKI by decreasing inflammatory response and promoting PTEC proliferation. Hence, the peritoneal M2 macrophage transplantation can serve as a potential cell therapy for renal diseases.  相似文献   

14.
Toll-like receptors (TLRs), which are essential components of the innate immune response, play an important role in acute kidney injury (AKI). Toll-like receptor 2 (TLR2) is constitutively expressed in tubular epithelial cells of the kidney and participates in cisplatin-induced AKI. The autophagy is a dynamic catabolic process that maintains intracellular homeostasis, which is involved in the pathogenesis of AKI. Recent studies demonstrate that PI3K/Akt signaling pathway regulates autophagy in response to various stimuli. Therefore, we propose that cisplatin might activate TLR2, which subsequently phosphorylates PI3K/Akt, leading to enhanced autophagy of renal tubular epithelial cells and protecting cisplatin-induced AKI. We found that TLR2 expression was significantly increased in the kidney after the cisplatin treatment. TLR2-deficient mice exacerbated renal injury in cisplatin-induced AKI, with higher serum creatinine and blood urea nitrogen, more severe morphological injury compared with that of wild-type mice. In vitro, we found that inhibition of TLR2 reduced tubular epithelial cell autophagy after the cisplatin treatment. Mechanistically, TLR2 inhibited autophagy via activating PI3K/Akt signaling pathway in renal tubular epithelial cells after the cisplatin treatment. Take together, these results suggest that TLR2 may protect cisplatin-induced AKI by activating autophagy via PI3K/Akt signaling pathway.  相似文献   

15.
Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.  相似文献   

16.
大强度运动中,非创伤性急性肾损伤(acute kindey injury, AKI)经常发生,表现为血尿、蛋白尿、血红蛋白尿等。一般认为,中低程度的运动性急性肾损伤是可逆的,可完全恢复。但动物实验与人类研究均发现,严重的运动性肾损伤会导致“功能性”急性肾损伤发展为“结构性”急性肾损伤,并增加慢性肾病的风险。运动性急性肾损伤对机体的潜在健康威胁已引起国内外相关领域学者的广泛关注。血清肌酐 (serum creatinine, Scr)和尿量作为肾功能的传统经典标志物,不能特异性反映早期肾损伤,而新型肾损伤标志物可进一步明确损伤的位置及严重程度。在运动领域,利用新型生物标志物进行无创性检查,识别早期运动性急性肾损伤非常必要。本文综述了反映肾小球或肾小管损伤、细胞周期停滞和肾损伤修复的新型生物标志物,着重论述了尿中性粒细胞明胶酶相关脂质运载蛋白(NGAL)和肾损伤分子-1(KIM-1)与肾功能的关系,以及长时间耐力运动、急性运动和高强度间歇阻力运动3种运动形式对肾功能的影响,旨在引起重视,精准识别风险,及时进行早干预。  相似文献   

17.
大强度运动中,非创伤性急性肾损伤(acute kindey injury, AKI)经常发生,表现为血尿、蛋白尿、血红蛋白尿等。一般认为,中低程度的运动性急性肾损伤是可逆的,可完全恢复。但动物实验与人类研究均发现,严重的运动性肾损伤会导致“功能性”急性肾损伤发展为“结构性”急性肾损伤,并增加慢性肾病的风险。运动性急性肾损伤对机体的潜在健康威胁已引起国内外相关领域学者的广泛关注。血清肌酐 (serum creatinine, Scr)和尿量作为肾功能的传统经典标志物,不能特异性反映早期肾损伤,而新型肾损伤标志物可进一步明确损伤的位置及严重程度。在运动领域,利用新型生物标志物进行无创性检查,识别早期运动性急性肾损伤非常必要。本文综述了反映肾小球或肾小管损伤、细胞周期停滞和肾损伤修复的新型生物标志物,着重论述了尿中性粒细胞明胶酶相关脂质运载蛋白(NGAL)和肾损伤分子-1(KIM-1)与肾功能的关系,以及长时间耐力运动、急性运动和高强度间歇阻力运动3种运动形式对肾功能的影响,旨在引起重视,精准识别风险,及时进行早干预。  相似文献   

18.
Abstract

Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). IRI-induced AKI releases proinflammatory cytokines (e.g. IL-1β, TNF-α, IL-6) that induce a systemic inflammatory response, resulting in proinflammatory cells recruitment and remote organ damage. AKI is associated with poor outcomes, particularly when extrarenal complications or distant organ injuries occur. Acute lung injury (ALI) is a major remote organ dysfunction associated with AKI. Hence, kidney-lung cross-talk remains a clinical challenge, especially in critically ill population. The stress-responsive enzyme, heme oxygenase-1 (HO-1) is largely known to protect against renal IRI and may be preventively induced using hemin prior to renal insult. However, the use of hemin-induced HO-1 to prevent AKI-induced ALI remains poorly investigated. Mice received an intraperitoneal injection of hemin or sterile saline 1?day prior to surgery. Twenty-four hours later, mice underwent bilateral renal IRI for 26?min or sham surgery. After 4 or 24?h of reperfusion, mice were sacrificed. Hemin-induced HO-1 improved renal outcomes after IRI (i.e. fewer renal damage, renal inflammation, and oxidative stress). This protective effect was associated with a dampened systemic inflammation (i.e. IL-6 and KC). Subsequently, mitigated lung inflammation was found in hemin-treated mice (i.e. neutrophils influx and lung KC). The present study demonstrates that hemin-induced HO-1 controls the magnitude of renal IRI and the subsequent AKI-induced ALI. Therefore, targeting HO-1 represents a promising approach to prevent the impact of renal IRI on distant organs, such as lung.  相似文献   

19.
Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.  相似文献   

20.
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号