首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Theileria annulata is a tick-borne intracellular protozoan parasite that causes tropical theileriosis, a fatal bovine lymphoproliferative disease. The parasite predominantly invades bovine B lymphocytes and macrophages and induces host cell transformation by a mechanism that is not fully comprehended. Analysis of signaling pathways by quantitative real-time PCR (qPCR) could be a highly efficient means to understand this transformation mechanism. However, accurate analysis of qPCR data relies on selection of appropriate reference genes for normalization, yet few papers on T. annulata contain evidence of reference gene validation. We therefore used the geNorm and NormFinder programs to evaluate the stability of 5 candidate reference genes; 18S rRNA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ACTB (β-actin), PRKG1 (protein kinase cGMP-dependent, type I) and TATA box binding protein (TBP). The results showed that 18S rRNA was the reference gene most stably expressed in bovine PBMCs transformed and non-transformed with T. annulata, followed by GAPDH and TBP. While 18S rRNA and GAPDH were the best combination, these 2 genes were chosen as references to study signaling pathways involved in the transformation mechanism of T. annulata.  相似文献   

2.
The tick-borne protozoan parasite Theileria parva is the causal agent of East Coast Fever (ECF), a severe lymphoproliferative disease of cattle in eastern, central and southern Africa. The life cycle of T. parva is predominantly haploid, with a brief diploid stage occurring in the tick vector that involves meiotic recombination. Resolved genetic studies of T. parva are currently constrained by the lack of a genome-wide high-definition genetic map of the parasite. We undertook a genetic cross of two cloned isolates of T. parva to construct such a map from 35 recombinant progeny, using a genome-wide panel of 79 variable number of tandem repeat markers. Progeny were established by in vitro cloning of cattle lymphocytes after infection with sporozoites prepared from Rhipicephalus appendiculatus ticks fed on a calf undergoing a dual infection with the two clonal parental stocks. The genetic map was determined by assigning individual markers to the four chromosome genome, whose physical length is approximately 8309 kilobasepairs (Kb). Segregation analysis of the markers among the progeny revealed a total genetic size of 1683.8 centiMorgans (cM), covering a physical distance of 7737.62 Kb (∼93% of the genome). The average genome-wide recombination rate observed for T. parva was relatively high, at 0.22 cM Kb−1 per meiotic generation. Recombination hot-spots and cold-spots were identified for each of the chromosomes. A panel of 27 loci encoding determinants previously identified as immunorelevant or likely to be under selection were positioned on the linkage map. We believe this to be the first genetic linkage map for T. parva. This resource, with the availability of the genome sequence of T. parva, will promote improved understanding of the pathogen by facilitating the use of genetic analysis for identification of loci responsible for variable phenotypic traits exhibited by individual parasite stocks.  相似文献   

3.
Theileria parva is the causative agent of East Coast fever (ECF), an important cattle disease in East and Central Africa. One of the methods for control of ECF is 'infection and treatment', a procedure in which an animal is infected with the live parasite and at the same time treated with a long-acting oxytetracycline formulation, restraining the infection and allowing a protective cellular immune response to develop. Optimal immunizing doses were estimated using models of trichotomous response: dysimmunization (death or severe reaction during immunization), immunization failure (death or severe reaction during lethal challenge) and successful immunization (neither dysimmunization nor immunization failure). In this paper we present methods of interpreting immunization trials and apply these methods to previously unpublished data from two such trials: one with a mixture of three T. parva stocks and one with a single T. parva stock. We explain why titration trials conducted with a cocktail of antigens could predict a suboptimal immunization dose. Indeed it is possible for a combination of three individually efficient stocks to result in a mixture with which optimal immunization response might be difficult to achieve, because of averaging effects. The corresponding interpretation provides insights into why standard immunization trials for T. parva have not yielded the results that might be expected of them. The results of this work may also have implications for the use of antigen cocktails in cancer, HIV and malaria vaccine trials.  相似文献   

4.
Toxoplasma gondii and mucosal immunity   总被引:34,自引:0,他引:34  
Toxoplasma gondii, an intracellular parasite infects the host through the oral route. Infection induces a cascade of immunological events that involve both the components of the innate and adaptative immune responses. Alteration of the homeostatic balance of infected intestine results in an acute inflammatory ileitis in certain strains of inbred mice. Both the infected enterocytes as well as the CD4 T cells from the lamina propria produce chemokines and cytokines that are necessary to clear the parasite whereas CD8 intraepithelial lymphocytes secrete transforming growth factor beta that reduces the inflammation. In this review, we describe the salient features of this complex network of interactions among the different components of the gut-associated lymphoid tissue cell population that are induced after oral infection with T. gondii.  相似文献   

5.
While reactive oxygen species (ROS) can kill Toxoplasma gondii in vitro the role these molecules play in vivo is not known. We used a flow cytometry-based assay to investigate the relationship between intracellular infection and ROS production during acute peritoneal toxoplasmosis in mice. A distinct population of ROS(+) inflammatory macrophages, detected by the oxidation of hydroethidine, was observed to increase progressively in frequency during the course of infection, and to be inversely correlated with the degree of cell parasitization. These data imply that either intracellular parasites inhibit ROS synthesis or, alternatively, ROS-producing cells contain anti-Toxoplasma activity. The latter interpretation was supported by the finding that uninfected ROS-producing inflammatory macrophages were resistant to infection in vivo. However, in the same animals, ROS-producing macrophages that had previously been parasitized could readily be infected with additional parasites, suggesting that the difference in ROS production between highly infected and less infected cells was not due to ROS-associated killing of parasites within these cells. In addition, macrophages infected with T. gondii in vitro and then briefly transferred to acutely infected mice upregulated ROS production in a manner that was again inversely correlated with the degree of intracellular parasitization. Taken together, these findings suggest that both ROS-associated anti-Toxoplasma activity and parasite-driven inhibition of ROS production underlie the observed pattern of ROS production. ROS function and parasite evasion of this function may contribute significantly to the balance between host defense and disease progression during acute infection.  相似文献   

6.
The in vitro antimalarial activity of the fungal metabolite gliotoxin (GTX) was evaluated, and its mechanism of action was studied. GTX showed plasmodicidal activity against both Plasmodium falciparum chloroquine-resistant strain K-1 and chloroquine-susceptible strain FCR-3. GTX cytotoxicity was significantly lower against a normal liver cell line (Chang Liver cells). The intracellular reduced glutathione level of parasitized and of normal red blood cells was not affected by GTX treatment. However, GTX decreased the chymotrypsin-like activity of parasite proteasomes in a time-dependent manner. The results of this study indicate that GTX possesses plasmodicidal activity and that this effect is due to inhibition of parasite proteasome activity, suggesting that GTX may constitute a useful antimalarial therapy.  相似文献   

7.
In the present study, the subcellular localization of the host red blood cell (RBC) membrane components, the alpha2-3-linked sialic acid (SA) residues and the lipid bilayer, was observed during the asexual growth of Babesia bovis using two erythrocyte probes, the SA-specific lectin (MALII) and the lipophilic fluorescent (PKH2) probes, respectively. In confocal laser scanning microscopy with MALII, the SA residues on the surface of parasitized RBCs appeared to accumulate into the intracellular parasites as the parasites matured as well as to remain on the surface of extracellular parasites. Furthermore, when PKH2-labeled RBCs were infected with B. bovis, PKH2 signals were also observed around both the intracellular and the extracellular parasites, similarly to the results of MALII. These results indicated that the components derived from the host erythrocyte membrane are incorporated into the intracellular parasites during their asexual growth within the parasitized RBC, suggesting the possible formation of a parasitophorous vacuole-based network or a parasite surface coat.  相似文献   

8.
Some changes produced in the cell populations of intestinal lymph by infection with the enteric nematode, Trichostrongylus colubriformis, were studied in sheep regularly re-infused with all discharged lymph. Lymphocyte traffic through the intestinal lymphatic duct was reduced until day 35 of primary infection, mainly due to the absence of lymphocytes with smaller cell volumes, but was increased two-fold after day 70 and in immune sheep. Antigen-reactive lymphocytes in blood and lymph were assayed by the uptake of 3H-thymidine in cell culture stimulated by extracts from the larvae of T. colubriformis. Cells from the blood and lymph of immune sheep were highly reactive to worm antigen. A relatively smaller reactivity was present in the blood of worm-free sheep and was abolished during the first 12 days of primary infection. Antigen reactive cells were not detected in intestinal lymph until 12 days after primary infection, and in vitro antigen reactivity in intestinal lymph of immune sheep was increased after challenge with infective larvae. Responses to the mitogens, concanvalin A and phytohaemagglutinin, in cultures of cells from both intestinal lymph and blood were depressed on days 7 and 12 of primary infection. It is proposed that the diminished traffic of lymphocytes in intestinal lymph and the reduced numbers of mitogen and nematode antigen-reactive lymphocytes in both blood and intestinal lymph during the early stages of infection with T. colubriformis is closely related to the slow development of protective immunity to this parasite.  相似文献   

9.
The cell interactions that take place between Toxoplasma gondii trophozoites and the human immune system have been investigated by using an in vitro model of infection. PBMC were co-cultured with live, appropriately attenuated, trophozoites. When cells from immune (seropositive) donors were used, a proliferative response was observed. At the same time, the proliferating T cells proved capable of controlling the growth of live trophozoites. By contrast, cells from seronegative donors failed to mount a proliferative response and intracellular overgrowth of trophozoites with subsequent cell injury occurred. Actively proliferating T cells were expanded in continuous cell lines with IL-2 and periodical restimulation with Ag in the presence of autologous irradiated mononuclear cells. From some of the lines obtained, clones were also derived. Ten clones were selected for further studies. They proliferated in response to trophozoites but not to unrelated Ag. Their response required the presence of autologous monocytes-macrophages isolated from peripheral blood on Percoll density gradients. B cells that were obtained from the same donors and immortalized by EBV infection proved inefficient as APC. These data suggest that live trophozoites have to be processed by macrophages in order to be presented to T cells. Upon appropriate antigen stimulation, all of the clones produced IL-2 and IFN-gamma, a finding that was consistent with both their CD4+ surface phenotype and their helper capacity on B cell proliferation and differentiation in vitro. The supernatants of all of the stimulated clones released a factor that activated macrophages to kill intracellular trophozoites as well as an unrelated pathogen, Listeria monocytogenes. This factor was identified as IFN-gamma because it was neutralized by specific anti-IFN-gamma antibodies. The present in vitro model of response to live protozoa may prove suitable to assess the role of both T lymphocytes and macrophages in intracellular parasite infections in man. Furthermore, this experimental system may be applied to detect specific lesions of cell mediated immunity in a number of immunodeficiency syndromes.  相似文献   

10.
Sero-epidemiological surveys involving 27,526 cattle over a period of 8 years show that Theileria parva, the parasite causing East Coast fever (ECF) is found throughout southern Zambia. Higher values of T. parva sero-prevalence were observed in the plateau districts of Monze, Choma and Mazabuka than in the valley districts of Siavonga and Sinazongwe. Our results reveal a strong association between high T. parva sero-prevalence and the presence of the periodic climatic phenomenon known as the El Nino Southern Oscillation. More T. parva sero-positive samples were recorded during El Nino years (1997/98) (P<0.001) than other years in the study period. From this association, we conclude that Multiple El Nino Southern Oscillation Indices can be used to predict years with high or low ECF infection prevalence thereby contributing to the improved control of ECF in the area.  相似文献   

11.
T. annulata, an intracellular pathogenic parasite of the Aplicomplexa protozoan family infects bovine B-lymphocytes and macrophages. Parasitized cells that become transformed survive and proliferate independently of exogenous growth factors. In the present study, we used the isogenic non parasitized BL3 and parasitized TBL3 B cell lines, as a model to evaluate the contribution of two-major PI3-K- and PKA-dependent anti-apoptotic pathways in the survival of T. annulata parasitized B lymphocytes. We found that T. annulata increases PKA activity, induces over-expression of the catalytic subunit and down-regulates the pro-survival phosphorylation state of Akt/PKB. Consistent with a role of PKA activation in survival, two pharmacological inhibitors H89 and KT5720 ablate PKA-dependent survival of parasitized cells. To specifically inhibit PKA pro-survival pathways we linked the DPTsh1 peptide shuttle sequence to PKI5–24 and we generated DPT-PKI, a cell permeable PKI. DPT-PKI specifically inhibited PKA activity in bovine cell extracts and, as expected, also inhibited the PKA-dependent survival of T. annulata parasitized TBL3 cells. Thus, parasite-dependent constitutive activation of PKA in TBL3 cells generates an anti-apoptotic pathway that can protect T. annulata-infected B cells from apoptosis. These results also indicate that DPT-PKI could be a powerful tool to inhibit PKA pathways in other cell types.  相似文献   

12.
A direct immunofluorescent antibody test with an anti-Trypanosoma cruzi F(ab')2 conjugate was used to demonstrate antigens of T. cruzi on the membrane surface of intact live or fixed macrophages and L929 mouse fibroblasts infected with the organism. Antigens were demonstrated in 5 to 50% of infected cells, and their presence was not directly related to the number of intracellular organisms. Cells with as few as four intracellular amastigotes had demonstrable surface antigens, whereas some cells with as many as twelve or more organisms did not. Capping of antigen-antibody complexes was noted to begin a few minutes after the addition of the anti-T cruzi F(ab')2 conjugate; by 30 min, most of the parasitized cells had eliminated the complexes, and no surface antigen of parasitic nature could be demonstrated. Although capping may have caused a negative result in a previously positive cell, other mechanisms may be involved, because antigens were not demonstrated in some heavily parasitized cells examined immediately after completion of the test. Treatment of the infected cells with trypsin or chymotrypsin resulted in the absence of demonstrable parasite antigens on the cell membrane surface. However, the antigens were again demonstrated 12 hr after the enzymes were removed. The reappearance of parasite antigens on the surface of infected cells was prevented by treatment of the monolayers with puromycin or tunicamycin. A T cell-enriched population of spleen lymphocytes from mice chronically infected with T. cruzi recognized the membrane-bound antigens and proceeded to destroy the host cell and the intracellular organisms. In this process, noninfected cells were also destroyed, possibly because they were coated with antigens released from intact infected cells or from infected cells that had been lysed by the action of the sensitized lymphocytes or their products.  相似文献   

13.
The intracellular protozoan parasite Neospora caninum is a cause of abortion and congenital disease in cattle worldwide. We have previously shown that natural killer (NK) cells produce IFN-gamma in response to N. caninum tachyzoites in vitro. This study aimed to investigate the role of NK cells and other cellular immune responses in an experimental N. caninum infection model in calves. Phenotyping of peripheral blood lymphocytes showed a drop in the percentage of NK cells at days 4-6 after i.v. inoculation, followed by an increase in the percentage of both NK cells and CD8+ T cells which peaked at days 11-15. A whole blood flow cytometric assay showed that CD4+ T cells were the major IFN-gamma producing cells, but in the early stages of the infection both NK cells and CD8+ T cells contributed to IFN-gamma production. We also compared the ability of two different N. caninum antigen preparations--sonicated soluble antigens and intact heat-inactivated parasites--to induce proliferation and IFN-gamma production in various cell types. Heat-inactivated tachyzoites induced a 3.7 times greater increase in the number of IFN-gamma producing NK cells compared with sonicated soluble antigens. This indicated the presence of some NK cell-stimulating antigens in the intact tachyzoite that were absent from the sonicated soluble antigens. The heat-inactivated whole tachyzoites also inhibited gammadelta T cell proliferation while the soluble antigens from N. caninum did not. We believe this is the first time NK cells have been demonstrated to be early responders in N. caninum infection in calves.  相似文献   

14.
A protocol to infect five-week-old Wistar rats by Plasmodium berghei which resulted in 100% mortality was developed in this work. In order to accomplish this goal, the effect of the administration of 10(7) and 10(8) parasitized erythrocytes by i.v. and i.p. route was investigated. The animals inoculated with 10(7) parasitized red blood cells by i.p. and i.v. routes showed 25 and 50% mortality, respectively. Inoculation with 10(8) parasitized erythrocytes by both routes resulted in a 100% lethal infection. The i.v. inoculation showed less scattered results and it was preferred over the i.p. route. The suitability of the protocol developed was evaluated by treating infected Wistar rats with chloroquine (30 mg/kg/day). A decreased parasitemia after the treatment was observed until the complete eradication of the parasite, around 10 days post-inoculation. Parasitemia depression after chloroquine treatment demonstrates the utility of the model developed to test new antimalarial drugs.  相似文献   

15.
16.
17.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

18.
Sporozoites of Theileria parva rapidly enter bovine lymphocytes by a mechanism of passive endocytosis that depends upon progressive circumferential binding of ligands on the parasite to receptors on the host-cell membrane. Within 10 min of entry, the micronemes of the sporozoite discharge their content and the enveloping host-cell membrane is lysed. The host cell responds within 30 min of invasion by polymerization of microtubules arrayed tangential to the sporozite and converging upon the cytocentrum. Multivesicular bodies and lysosomes are generated and gather around the parasite but are ineffective in the absence of an endocytotic membrane with which they can fuse. Thus Theileria parva can be added to the category of obligate intracellular parasites that ensure their survival by lysis of the parasitophorous vacuole.  相似文献   

19.
Sleep is considered an important predictor of immunity. A lack of sleep may reduce immunity, which increases susceptibility to any type of infection. Moreover, sleep deprivation in humans produces changes in both, the percent of circulating immune cells (T cells and NK cells) and cytokine levels (IL-1, IFNγ, TNΦ-αα, IL-6 and IL-17). The aim of our study was to investigate whether sleep deprivation produces deregulation on immune variables during the immune response generated against the helminth parasite Trichinella spiralis. Because sleep deprivation is stressful per se, we designed another experiments to compared stress alone (consisting in movement restriction and single housing) with sleep deprivation, in both control (uninfected) and experimental (infected) rats. Our results demonstrate that the sleep deprivation and stress have a differential effect in mesenteric lymph nodes (MLN) and spleen. In uninfected rats sleep deprivation alone produces an increase in natural killer cells (NK+) and B cells (CD45+), accompanied by a decrease in cytotoxic T cells (CD3+CD8+) in spleen; while, in MLN, produces only an increase in natural killer cells (NK+). Both, SD and stress, produce an increased percentage of total T cells (CD3+) in spleen. In the MLN both are also associated to an increase in cytotoxic T cells (CD3+CD8+) and B cells (CD45+). In the spleens of parasitized rats, cell populations did not change. In spleens of both, sleep-deprived and stressed infected rats, we observed an increase in B cells (CD45+). In infected rats, sleep deprivation alone produced an increase in NK cells (NK+). In mesenteric node cell populations of parasitized rats, we observed a decrease in NK cells and an increase in T helper (CD4+) cells in both SD and stressed rats. Rats that were only subjected to stress showed a decrease in B cells (CD45+). These findings suggest that the immune response generated against infection caused by T. spiralis is affected when the sleep pattern is disrupted. These results support the notion that sleep is a fundamental process for an adequate and strong immune response generated against this parasite.  相似文献   

20.
Trypanosoma cruzi is an intracellular protozoan parasite that predominantly invades mononuclear phagocytes and is able to establish a persistent infection. The production of reactive oxygen species (ROS) by phagocytes is an innate defence mechanism against microorganisms. It has been postulated that ROS such as superoxide anion (O2), hydrogen peroxide and peroxynitrite, may play a crucial role in the control of pathogen growth. However, information on parasite molecules able to trigger ROS production is scarce. In this work, we investigated whether cruzipain, an immunogenic glycoprotein from T. cruzi, was able to trigger the oxidative burst by murine cells. By employing chemiluminiscense and flow-cytometric analysis, we demonstrated that cruzipain induced ROS production in splenocytes from non-immune and cruzipain immune C57BL/6 mice and in a Raw 264.7 macrophage cell line. We also identified an O2 molecule as one of the ROS produced after antigen stimulation. Cruzipain stimulation induced NOX2 (gp91phox) and p47phox expression, as well as the co-localisation of both NADPH oxidase enzyme subunits. In the current study, we provide evidence that cruzipain not only increased ROS production but also promoted IL-6 and IL-1β cytokine production. Taken together, we believe these results demonstrate for the first time that cruzipain, a single parasite molecule, in the absence of infection, favors oxidative burst in murine cells. This represents an important advance in the knowledge of parasite molecules that interact with the phagocyte defence mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号