首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.  相似文献   

2.
The double-ring chaperonin GroEL mediates protein folding in the central cavity of a ring bound by ATP and GroES, but it is unclear how GroEL cycles from one folding-active complex to the next. We observe that hydrolysis of ATP within the cis ring must occur before either nonnative polypeptide or GroES can bind to the trans ring, and this is associated with reorientation of the trans ring apical domains. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring with polypeptide binding first, which stimulates the ATP-dependent dissociation of the cis complex (by 20- to 50-fold), followed by GroES binding. These results indicate that, in the presence of nonnative protein, GroEL alternates its rings as folding-active cis complexes, expending only one round of seven ATPs per folding cycle.  相似文献   

3.
M K Hayer-Hartl  F Weber    F U Hartl 《The EMBO journal》1996,15(22):6111-6121
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

4.
The chaperonin GroEL binds nonnative proteins too large to fit inside the productive GroEL-GroES cis cavity, but whether and how it assists their folding has remained unanswered. We have examined yeast mitochondrial aconitase, an 82 kDa monomeric Fe(4)S(4) cluster-containing enzyme, observed to aggregate in chaperonin-deficient mitochondria. We observed that aconitase folding both in vivo and in vitro requires both GroEL and GroES, and proceeds via multiple rounds of binding and release. Unlike the folding of smaller substrates, however, this mechanism does not involve cis encapsulation but, rather, requires GroES binding to the trans ring to release nonnative substrate, which likely folds in solution. Following the phase of ATP/GroES-dependent refolding, GroEL stably bound apoaconitase, releasing active holoenzyme upon Fe(4)S(4) cofactor formation, independent of ATP and GroES.  相似文献   

5.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

6.
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.  相似文献   

7.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.  相似文献   

8.
Two D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) folding intermediate subunits bind with chaperonin 60 (GroEL) to form a stable complex, which can no longer bind with additional GAPDH intermediate subunits, but does bind with one more lysozyme folding intermediate or one chaperonin 10 (GroES) molecule, suggesting that the two GAPDH subunits bind at one end of the GroEL molecule displaying a "half of the sites" binding profile. For lysozyme, GroEL binds with either one or two folding intermediates to form a stable 1:1 or 1:2 complex with one substrate on each end of the GroEL double ring for the latter. The 1:1 complex of GroEL.GroES binds with one lysozyme or one dimeric GAPDH folding intermediate to form a stable ternary complex. Both complexes of GroEL.lysozyme1 and GroEL.GAPDH2 bind with one GroES molecule only at the other end of the GroEL molecule forming a trans ternary complex. According to the stoichiometry of GroEL binding with the GAPDH folding intermediate and the formation of ternary complexes containing GroEL.GAPDH2, it is suggested that the folding intermediate of GAPDH binds, very likely in the dimeric form, with GroEL at one end only.  相似文献   

9.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes   总被引:1,自引:0,他引:1  
The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.  相似文献   

11.
Martin J 《Biochemistry》2002,41(15):5050-5055
Macromolecular crowding is a critical parameter affecting the efficiency of cellular protein folding. Here we show that the proteins dihydrofolate reductase, enolase, and green fluorescent protein, which can fold spontaneously in diluted buffer, lose this ability in a crowded environment. Instead, they accumulate as soluble, protease-sensitive non-native species. Their folding becomes dependent on the complete GroEL/GroES chaperonin system and is not affected by trap-GroEL, indicating that folding has to occur in the chaperonin cavity with release of nativelike proteins into the bulk solution. In addition, we demonstrate that efficient folding in the chaperonin cavity requires ATP hydrolysis, as formation of ternary GroEL/GroES complexes with substrate proteins in the presence of ADP results only in very inefficient reactivation. However, protein refolding reactions using ADP-fluoroaluminate complexes, or single-ring GroEL and GroES under conditions where only a single round of ATP hydrolysis occurs, yield large amounts of refolded enzymes. Thus, the mode of initial ternary complex formation appears to be critical for subsequent productive release of substrate into the cavity under certain crowding conditions, and is only efficient when triggered by ATP hydrolysis. Our data indicate that stringent conditions of crowding can impart a stronger dependence of folding proteins on the assistance by chaperonins.  相似文献   

12.
Folding of malate dehydrogenase inside the GroEL-GroES cavity   总被引:1,自引:0,他引:1  
The chaperonin GroEL binds nonnative substrate protein in the hydrophobic central cavity of an open ring. ATP and GroES binding to the same ring converts this cavity into an encapsulated, hydrophilic chamber that mediates productive folding. A 'rack' mechanism of initial protein unfolding proposes that, upon GroES and ATP binding, the polypeptide is stretched between the binding sites on the twisting apical domains of GroEL before complete release into the chamber. Here, the structure of malate dehydrogenase (MDH) subunit during folding is monitored by deuterium exchange, peptic fragment production and mass spectrometry. When bound to GroEL, MDH exhibits a core of partially protected secondary structure that is only modestly deprotected upon ATP and GroES binding. Moreover, deprotection is broadly distributed throughout MDH, suggesting that it results from breaking hydrogen bonds between MDH and the cavity wall or global destabilization, as opposed to forced mechanical unfolding.  相似文献   

13.
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states.  相似文献   

14.
When the enzyme rhodanese was inactivated with hydrogen peroxide (H(2)O(2)), it underwent significant conformational changes, leading to an increased exposure of hydrophobic surfaces. Thus, this protein seemed to be an ideal substrate for GroEL, since GroEL uses hydrophobic interactions to bind to its substrate polypeptides. Here, we report on the facilitated reactivation (86%) of H(2)O(2)-inactivated rhodanese by GroEL alone. Reactivation by GroEL required a reductant and the enzyme substrate, but not GroES or ATP. Further, we found that GroEL interacted weakly and/or transiently with H(2)O(2)-inactivated rhodanese. A strong interaction with rhodanese was obtained when the enzyme was pre-incubated with urea, indicating that exposure of hydrophobic surfaces alone on oxidized rhodanese was not sufficient for the formation of a strong complex and that a more unfolded structure of rhodanese was required to interact strongly with GroEL. Unlike prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that GroEL can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein. Additionally, the mechanism for the GroEL-facilitated reactivation of rhodanese shown here appears to be different than that for the chaperonin-assisted folding of chemically unfolded polypeptides in which a nucleotide and sometimes GroES is required.  相似文献   

15.
GroEL C138W is a mutant form of Escherichia coli GroEL, which forms an arrested ternary complex composed of GroEL, the co-chaperonin GroES and the refolding protein molecule rhodanese at 25 degrees C. This state of arrest could be reversed with a simple increase in temperature. In this study, we found that GroEL C138W formed both stable trans- and cis-ternary complexes with a number of refolding proteins in addition to bovine rhodanese. These complexes could be reactivated by a temperature shift to obtain active refolded protein. The simultaneous binding of GroES and substrate to the cis ring suggested that an efficient transfer of substrate protein into the GroEL central cavity was assured by the binding of GroES prior to complete substrate release from the apical domain. Stopped-flow fluorescence spectroscopy of the mutant chaperonin revealed a temperature-dependent conformational change in GroEL C138W that acts as a trigger for complete protein release. The behavior of GroEL C138W was reflected closely in its in vivo characteristics, demonstrating the importance of this conformational change to the overall activity of GroEL.  相似文献   

16.
In all three kingdoms of life chaperonins assist the folding of a range of newly synthesized proteins. As shown recently, Archaea of the genus Methanosarcina contain both group I (GroEL/GroES) and group II (thermosome) chaperonins in the cytosol. Here we report on a detailed functional analysis of the archaeal GroEL/GroES system of Methanosarcina mazei (Mm) in comparison to its bacterial counterpart from Escherichia coli (Ec). We find that the groESgroEL operon of M. mazei is unable to functionally replace groESgroEL in E. coli. However, the MmGroES protein can largely complement a mutant EcGroES protein in vivo. The ATPase rate of MmGroEL is very low and the dissociation of MmGroES from MmGroEL is 15 times slower than for the EcGroEL/GroES system. This slow ATPase cycle results in a prolonged enclosure time for model substrate proteins, such as rhodanese, in the MmGroEL:GroES folding cage before their release into the medium. Interestingly, optimal functionality of MmGroEL/GroES and its ability to encapsulate larger proteins, such as malate dehydrogenase, requires the presence of ammonium sulfate in vitro. In the absence of ammonium sulfate, malate dehydrogenase fails to be encapsulated by GroES and rather cycles on and off the GroEL trans ring in a non-productive reaction. These results indicate that the archaeal GroEL/GroES system has preserved the basic encapsulation mechanism of bacterial GroEL and suggest that it has adjusted the length of its reaction cycle to the slower growth rates of Archaea. Additionally, the release of only the folded protein from the GroEL/GroES cage may prevent adverse interactions of the GroEL substrates with the thermosome, which is not normally located within the same compartment.  相似文献   

17.
Although a cis mechanism of GroEL-mediated protein folding, occurring inside a hydrophilic chamber encapsulated by the co-chaperonin GroES, has been well documented, recently the GroEL-GroES-mediated folding of aconitase, a large protein (82 kDa) that could not be encapsulated, was described. This process required GroES binding to the ring opposite the polypeptide (trans) to drive release and productive folding. Here, we have evaluated this mechanism further using trans-only complexes in which GroES is closely tethered to one of the two GroEL rings, blocking polypeptide binding by that ring. In vitro, trans-only folded aconitase with kinetics identical to GroEL-GroES. Surprisingly, trans-only also folded smaller GroEL-GroES-dependent substrates, Rubisco and malate dehydrogenase, but at rates slower than the cis reaction. Remarkably, in vivo, a plasmid encoding a trans-only complex rescued a GroEL-deficient strain, but the colony size was approximately one-tenth that produced by wild-type GroEL-GroES. We conclude that a trans mechanism, involving rounds of binding to an open ring and direct release into the bulk solution, can be generally productive although, where size permits, cis encapsulation supports more efficient folding.  相似文献   

18.
GroEL-mediated protein folding.   总被引:18,自引:6,他引:12       下载免费PDF全文
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.  相似文献   

19.
GroEL is an Escherichia coli chaperonin that is composed of two heptameric rings stacked back-to-back. GroEL assists protein folding with its cochaperonin GroES in an ATP-dependent manner in vitro and in vivo. However, it is still unclear whether GroES binds to both rings of GroEL simultaneously under physiological conditions. In this study, we monitored the GroEL-GroES interaction in the reaction cycle using fluorescence resonance energy transfer. We found that nearly equivalent amounts of symmetric GroEL-(GroES)(2) (football-shaped) complex and asymmetric GroEL-GroES (bullet-shaped) complex coexist during the functional reaction cycle. We also found that D398A, an ATP hydrolysis defective mutant of GroEL, forms a football-shaped complex with ATP bound to the two rings. Furthermore, we showed that ADP prevents the association of ATP to the trans-ring of GroEL, and as a consequence, the second GroES cannot bind to GroEL. Considering the concentrations of ADP and ATP in E. coli, ADP is expected to have a small effect on the inhibition of GroES binding to the trans-ring of GroEL in vivo. These results suggest that we should reconsider the chaperonin-mediated protein-folding mechanism that involves the football-shaped complex.  相似文献   

20.
Escherichia coli molecular chaperone GroEL and co-chaperone GroES are well known to assist the folding/refolding of a diverse range of substrate proteins. Despite this, there have been relatively few reports of the GroEL/GroES molecular chaperone system being used as a biotechnology tool for protein folding/refolding. In this paper, a solution-phase protein folding bioreactor is described that involves the complete GroEL/GroES system. The main features of this bioreactor are the use of a stirred-cell concentrator fitted with a 100 kDa molecular weight cutoff membrane and an attached buffer reservoir. This bioreactor system was used successfully for assisted-batch refolding of guanidinium chloride (Gu-HCl) unfolded mitochondrial malate dehydrogenase (mMDH). We believe that protein folding bioreactor systems of this type could have wide potential utility for the folding/refolding of unfolded protein substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号