首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A bovine large-insert DNA library has been constructed in a Bacterial Artificial Chromosome (BAC) vector. The source DNA was derived from lymphocytes of a Jersey male. High-molecular-weight DNA fragments were produced by treatment with EcoRI/EcoRI methylase and cloned into the EcoRI site of pBACe3.6. In total, 157,240 individual BACs have been picked into 384-well plates. Approximately 190 randomly chosen clones have been characterized by Pulsed Field Gel Electrophoresis (PFGE) and have an average insert size of 105 kb, suggesting library coverage representing 5–6 genome equivalents. The frequency of clones without inserts is 4%. The chromosomal location of 51 BACs was studied by FISH; 3 showed more than one signal, indicating a chimerism frequency of roughly 6%. Approximately 50% of the clones in the library contain Simple Repeat Sequences (microsatellites), and 4% of the clones contain centromeric repeats. Insert stability was assessed by restriction digestion of DNA prepared from 20 clones after serial culture for one and three nights. Only one clone showed any evidence of an altered restriction pattern. Clones from 360 × 384-well plates (138,240 colonies) were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Both membranes and superpools are available from the RZPD, Berlin (http://www.rzpd.de). PCR 4-D superpools have been prepared from an additional 23,000 clones. The library has been screened for a total of 24 single-copy sequences; positive clones have been obtained in all cases. Received: 14 October 1998 / Accepted: 9 March 1999  相似文献   

2.
Detection and characterization of chimeric yeast artificial-chromosome clones.   总被引:11,自引:0,他引:11  
Methods for the construction of yeast artificial-chromosome (YAC) clones have been designed to isolate single, large (100-1000 kb) segments of chromosomal DNA. It is apparent from early experience with this cloning system that the major artifact in YAC clones involves the formation of YACs that contain two or more unrelated pieces of DNA. Such "chimeric" YACs are not easily recognized, particularly in libraries constructed from the total DNA of an organism. In some libraries, they have been found to constitute a major fraction of the clones. Here we discuss some of our experiences with chimeric YACs, with particular emphasis on the approaches that we have employed to detect such aberrant clones. In addition, we describe the detailed characterization of one chimeric YAC isolated from a library prepared from total human DNA. The organization of this clone indicates that it formed by in vivo recombination, presumably in yeast, between two Alu sequences located on unrelated segments of human DNA.  相似文献   

3.
《Gene》1997,191(1):69-79
We have constructed a human genomic bacterial artificial chromosome (BAC) library using high molecular weight DNA from a pre-pro-B cell line, FLEB14-14, with a normal male diploid karyotype. This BAC library consists of 96 000 clones with an average DNA insert size of 110 kb, covering the human genome approximately 3 times. The library can be screened by three different methods. (1) Probe hybridization to 31 high-density replica (HDR) filters: each filter contains 3072 BAC clones which were gridded in a 6×6 pattern. (2) Probe hybridization to two Southern blot filters to which 31 HindIII digests of the pooled 3072 BAC clones were loaded. This identifies a particular HDR filter for which further probe hybridization is performed to identify a particular clone(s). (3) Two-step polymerase chain reaction (PCR). First, PCR is applied to DNA samples prepared from ten superpools of 9600 BAC clones each to identify a particular superpool and the second PCR is applied to 40 unique DNA samples prepared from the four-dimensionally assigned BAC clones of the particular superpool. We present typical examples of the library screening using these three methods. The two-step PCR screening is particularly powerful since it allows us to isolate a desired BAC clone(s) within a day or so. The theoretical consideration of the advantage of this method is presented. Furthermore, we have adapted Vectorette method to our BAC library for the isolation of terminal sequences of the BAC DNA insert to facilitate contig formation by BAC walking.  相似文献   

4.
A bovine genomic phagemid library was constructed with randomly sheared DNA. Enrichment of this single-stranded DNA library with CA or GT primers resulted in 45% positive clones. The 14% of positive clones with (CA · GT)>12, and not containing flanking repetitive elements, were sequenced, and the efficiency of marker production was compared with random M13 bacteriophage libraries. Primer sequences and genotyping information are presented for 390 informative bovine microsatellite markers. The genomic frequency for 11 tri- and tetranucleotide repeats was estimated by hybridization to a lambda genomic library. Only GCT, GGT, and GGAT were estimated to have a frequency of >100 per genome. Enrichment of the phagemid library for these repeats failed to provide a viable source of microsatellite markers in the bovine. Comparison of map interval lengths between 100 markers from the enriched library prepared from randomly sheared DNA and M13 bacteriophage libraries prepared from Mbo1 restriction digests suggested no bias in skeletal genomic coverage based on source of small insert DNA. In conclusion, enrichment of the bovine phagemid library provides a sufficient source of microsatellites so that small repeat lengths and flanking repetitive sequences common in the bovine can be eliminated, resulting in a high percentage of informative markers.The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession numbers U25689 and U25690.  相似文献   

5.
A yeast artificial chromosome (YAC) genomic library of Beta vulgaris was constructed in the pYAC4 vector. High-molecular-weight DNA was prepared from agarose-embedded leaf protoplasts from a triploid cultivar. The library was found to contain 33,500 clones in an ordered array of microtiter plates. Mean size of the inserts was estimated to be 135 kb, and the library should therefore represent the equivalent of five haploid genomes. The library was characterised for the presence of highly repetitive, chloroplast and single-copy sequences. In order to isolate single-copy sequences, 18 pools of DNA, each from 1920 individual YAC clones, were prepared for rapid screening of the library by the polymerase chain reaction. The results of these screenings showed that the number of isolated clones was at or near the frequency expected.  相似文献   

6.
A new Arabidopsis thaliana (ecotype Columbia) genomic library has been constructed in Yeast Artificial Chromosomes: the CIC library (for CEPH, INRA and CNRS). Optimization of plant culture conditions and protoplast preparation allowed the recovery of large amounts of viable protoplasts. Mechanical shearing of DNA was minimized by isolation of DNA from protoplasts embedded in agarose. Cloning of large inserts was favored by including two successive size fractionation steps (after partial Eco RI digestion and after ligation with the vector arms), which selected DNA fragments larger than 350 kb. The library consists of 1152 clones with an average insert size of 420 kb. Clones carrying chloroplast DNA and various nuclear repeated sequences have been identified. Twenty-one per cent of the clones are found to contain chloroplast DNA. Therefore, the library represents around four nuclear genome equivalents. The clones containing 5S rDNA genes, 18S-25S rDNA sequences and the 180 bp paracentromeric repeated element account for 3.6%, 8.9% and 5.8%, respectively. Only one clone was found to carry the 160 bp paracentromeric repeated element. Given the smaller size of clones carrying Arabidopsis repeated DNA, the average size of remaining clones is around 480 kb. The library was screened by PCR amplification using pairs of primers corresponding to sequences dispersed in the genome. Seventy out of 76 pairs of primers identified from one to seven YAC clones. Thus at least 92% of the genome is represented in the CIC library. The survey of the library for clones containing unlinked DNA sequences indicates that the proportion of chimeric clones is lower than 10%.  相似文献   

7.
Isolation of polymorphic DNA segments from human chromosome 21.   总被引:23,自引:2,他引:21       下载免费PDF全文
A somatic cell hybrid line containing only human chromosome 21 on a mouse background has been used as the source of DNA for construction of a recombinant phage library. Individual phages containing human inserts have been identified. Repeat-free human DNA subclones have been prepared and used to screen for restriction fragment length polymorphisms to provide genetic markers on chromosome 21. Nine independently isolated clones used as probes identified a total of 11 new RFLPs. Four of the DNA probes recovered from the library have been mapped unequivocally to chromosome 21 using a panel of somatic cell hybrid lines. A fifth probe detected an RFLP on chromosome 21 as well as sequences on other chromosomes. This set of RFLPs may now form the basis for construction of a genetic linkage map of human chromosome 21.  相似文献   

8.
Clones from the same marine bacterioplankton community were sequenced, 100 clones based on DNA (16S rRNA genes) and 100 clones based on RNA (16S rRNA). This bacterioplankton community was dominated by alpha-Proteobacteria in terms of repetitive DNA clones (52%), but gamma-Proteobacteria dominated in terms of repetitive RNA clones (44%). The combined analysis led to a characterization of phylotypes otherwise uncharacterized if only the DNA or RNA libraries would have been analyzed alone. Of the DNA clones, 25.5% were found only in this library and no close relatives were detected in the RNA library. For clones from the RNA library, 21.5% of RNA clones did not indicate close relatives in the DNA library. Based on the comparisons between DNA and RNA libraries, our data indicate that the characterization of the bacterial community based on RNA has the potential to characterize distinct phylotypes from the marine environment, which remain undetected on the DNA level.  相似文献   

9.
A critical step in the process of metagenome analysis is to screen for clones that contain specific genes among a large number of clones. To form one of the sequence-based screening tools of a metagenome library, we designed a format of microarray [metagenome microarray (MGA)] that is arrayed with fosmid library clone DNA samples on a glass slide. We evaluated the MGA using random prime labeled fluorescent probes prepared from PCR products of the target gene and found that we could obtain specific hybridization signals only for the fosmid clone that contained the target gene. We found that the detection limit of the MGA was c. 10 ng microL(-1) of fosmid clone DNA, and that the MGA-based hybridization was quantitative within a concentration range of 10-200 ng microL(-1) of fosmid clone DNA. We used the MGA successfully to identify two fosmid clones that contained 16S rRNA genes from a fosmid library from the sediment of the East Sea, Korea. In conclusion, we have demonstrated that the MGA can be used for screening for fosmid clones containing specific genes in a metagenome library, and that this technology has potential application as a high-throughput metagenome screening tool.  相似文献   

10.
A metagenomic (community genomic) library consisting of 5,760 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B from DNA extracted from the large-bowel microbiota of BALB/c mice. DNA inserts detected in 61 randomly chosen clones averaged 55 kbp (range, 8 to 150 kbp) in size. A functional screen of the library for beta-glucanase activity was conducted using lichenin agar plates and Congo red solution. Three clones with beta-glucanase activity were detected. The inserts of these three clones were sequenced and annotated. Open reading frames (ORF) that encoded putative proteins with identity to glucanolytic enzymes (lichenases and laminarinases) were detected by reference to databases. Other putative genes were detected, some of which might have a role in environmental sensing, nutrient acquisition, or coaggregation. The insert DNA from two clones probably originated from uncultivated bacteria because the ORF had low sequence identity with database entries, but the genes associated with the remaining clone resembled sequences reported in Bacteroides species.  相似文献   

11.
A new method for screening of YAC libraries is described. Individual YACs were pooled into groups of 384 clones and prepared as samples suitable for pulsed-field gel electrophoresis. A five hit human YAC library (Brownstein et al., 1989) containing approximately 60,000 clones was condensed into 150 such pools and chromosomal DNAs in each sample were separated on three pulsed field gels containing 50 samples each. Southern blots prepared from these gels were hybridized with probes of interest to identify pools containing homologous YACs. Further purification was performed using standard colony hybridization procedures. Twenty-one probes used thus far have identified 47 positive pools and corresponding YACs have been purified from 28 of these. Some significant advantages of this method include avoidance of DNA sequence analysis and primer generation prior to YAC screening and the ability to handle the entire library on three filters. The screening approach described here permits rapid isolation of YACs corresponding to unsequenced loci and will accelerate establishment of YAC contigs for large chromosomal segments.  相似文献   

12.
We have constructed a human chromosome 2-specific bacterial artificial chromosome (BAC) library using DNA from the somatic cell hybrid GM10826. The average size of the clones is about 63 kb. The coverage and distribution of the library were estimated by screening with known polymorphic genetic markers and fluorescence in situ hybridization (FISH). Twentyone markers tested positive when DNA pools prepared from approximately one-sixth of the library were screened with 33 known markers. This is consistent with the theoretical calculation of 63% coverage at one genomic equivalent. This suggested that the coverage of the library is approximately 5-6×. FISH analysis with 54 BACs revealed single site hybridization to chromosome 2, and the clones were distributed randomly on the chromosome. We have also performed direct sequencing of the BAC insert ends to generate sequence-tagged sites suitable for mapping and chromosome walking. This is the first reported human chromosome 2-specific BAC library and should provide a resource for physical mapping and disease searching for this chromosome.  相似文献   

13.
CpG islands (CGIs) in human genomic DNA are GC-rich fragments whose aberrant methylation is associated with human disease development. In the current study, methylation-sensitive mirror orientation selection (MS-MOS) was developed to efficiently isolate and enrich unmethylated CGIs from human genomic DNA. The unmethylated CGIs prepared by the MS-MOS procedure subsequently were used to construct a CGI library. Then the sequence characteristics of cloned inserts of the library were analyzed by bioinformatics tools, and the methylation status of CGI clones was analyzed by HpaII PCR. The results showed that the MS-MOS method could be used to isolate up to 0.001% of differentially existed unmethylated DNA fragments in two complex genomic DNA. In the CGI library, 34.1% of clones had insert sequences satisfying the minimal criteria for CGIs. Excluding duplicates, 22.0% of the 80,000 clones were unique CGI clones, representing 60% of all the predicted CGIs (about 29,000) in human genomic DNA, and most or all of the CGI clones were unmethylated in human normal cell DNA based on the HpaII PCR analysis results of randomly selected CGI clones. In conclusion, MS-MOS was an efficient way to isolate and enrich human genomic CGIs. The method has powerful potential application in the comprehensive identification of aberrantly methylated CGIs associated with human tumorigenesis to improve understanding of the epigenetic mechanisms involved.  相似文献   

14.
A metagenomic (community genomic) library consisting of 5,760 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B from DNA extracted from the large-bowel microbiota of BALB/c mice. DNA inserts detected in 61 randomly chosen clones averaged 55 kbp (range, 8 to 150 kbp) in size. A functional screen of the library for β-glucanase activity was conducted using lichenin agar plates and Congo red solution. Three clones with β-glucanase activity were detected. The inserts of these three clones were sequenced and annotated. Open reading frames (ORF) that encoded putative proteins with identity to glucanolytic enzymes (lichenases and laminarinases) were detected by reference to databases. Other putative genes were detected, some of which might have a role in environmental sensing, nutrient acquisition, or coaggregation. The insert DNA from two clones probably originated from uncultivated bacteria because the ORF had low sequence identity with database entries, but the genes associated with the remaining clone resembled sequences reported in Bacteroides species.  相似文献   

15.
We have developed an efficient screening method to search for clones in cosmid libraries prepared from human genomic DNA. Genomic, cDNA, and cosmid probes have been used to isolate homologous cosmids from human chromosomes 7, 10, 16, 17 and X as part of a search for polymorphic nucleotide sequences. This method has been successfully applied to chromosome walking experiments at the interstitial retinol-binding protein locus on chromosome 10, and may be a useful tool for investigating representation of cloned sequences in cosmid libraries. Our library was prepared in the vector c2RB (Bates and Swift, 1983), but the method is applicable to any cosmid cloning system in which the inserted DNA can be separated from the vector by restriction enzyme digestion. A cosmid library containing five human genome equivalents can be rapidly screened using three to four Southern hybridization filters. This results in substantial labor saving, particularly when screening genomes of high complexity with many different probes. Another advantage of the system is that it allows for the long-term storage of the cosmids so that they can be screened whenever necessary. As a consequence, cosmid screening can be made a routine laboratory procedure.  相似文献   

16.
A rat PAC library was constructed in the vector pPAC4 from genomic DNA isolated from female Brown Norway rats. This library consists of 215,409 clones arrayed in 614 384-well microtiter plates. An average insert size of 143 kb was estimated from 217 randomly isolated clones, thus representing approximately 10-fold genome coverage. This coverage provides a very high probability that the library contains a unique sequence in genome screening. Tests on randomly selected clones demonstrated that they are very stable, with only 4 of 130 clones showing restriction digest fragment alterations after 80 generations of serial growth. FISH analysis using 70 randomly chosen PACs revealed no significant chimeric clones. About 7% of the clones analyzed contained repetitive sequences related to centromeric regions that hybridized to some but not all centromeres. DNA plate pools and superpools were made, and high-density filters each containing an array of 8 plates in duplicate were prepared. Library screening on these superpools and appropriate filters with 10 single-locus rat markers revealed an average of 8 positive clones, in agreement with the estimated high genomic coverage of this library and representation of the rat genome. This library provides a new resource for rat genome analysis, in particular the identification of genes involved in models of multifactorial disease. The library and high-density filters are currently available to the scientific community.  相似文献   

17.
A yeast artificial chromosome (YAC) library was constructed using high-molecular-weight DNA isolated from pepper (Capsicum annuum L.) leaf protoplasts. Insert DNA was prepared by partial digestion using EcoRI and subjected to electrophoretic fractionation before in-gel ligation to the pJS97/98 YAC vector. Prior to transformation of yeast spheroplasts, ligation products were subjected to a second electrophoretic size selection. The library consists of about 19 000 clones with an average insert size of 500 kb, thus representing approximately three haploid genome equivalents. Three PCR-based markers tightly linked to the pepper Bs2 resistance gene were used to assess the utility of this library for positional cloning. Three YAC clones containing pepper genomic DNA from the Bs2 resistance locus were isolated from the library. The clones ranged in size from 270 kb to 1.2 Mb and should prove useful for the cloning of the Bs2 gene. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

18.
A bacterial artificial chromosome (BAC) library consisting of 9,000 clones (representing a 4.5 genome equivalents) with an average DNA insert size of 60 kb was constructed from arabidopsis nuclear DNA. We have demonstrated the usefulness of this library by identifying one BAC clone that hybridizes with the arabidopsisPHYB gene and seven clones, representing four distinct classes, that hybridize to a putative disease-resistance gene. This library represents an additional resource for map-based cloning and physical mapping in arabidopsis.  相似文献   

19.
The combined use of the contemporary vector systems, the bacterial artificial chromosome (BAC) vector and the Bacillus subtilis genome (BGM) vector, makes possible the handling of giant-length DNA (above 100 kb). Our newly constructed BGM vector efficiently integrated DNA prepared in the BAC vector. A BAC library comprised of 18 independent clones prepared from mitochondrial DNA (mtDNA) of Arabidopsis thaliana was converted to a parallel BGM library using the new BGM vector. The effectiveness of the combined use of the vector systems was confirmed by the stable recovery of all 18 DNAs as BAC clones from the respective BGM clones. We show that DNA in BGM was stably preserved at room temperature after spore formation of the host B.subtilis. Rapid and stable shuttling between Escherichiacoli and the B. subtilis host, combined with spore-mediated DNA storage, may facilitate the long-term and low-cost preservation and the transportation of DNA resources.  相似文献   

20.
Restriction landmark genome scanning (RLGS) is an effective genome-scanning technique capable of identifying DNA amplification and aberrant DNA methylation. Previously published methods for the cloning of human DNA fragments from RLGS gels have been successful only for high-copy-number fragments (repetitive elements or DNA amplifications). We present here the first technique capable of efficiently cloning single-copy human DNA fragments ("spots") identified in RLGS profiles. This technique takes advantage of a plasmid-based, human genomic DNA, NotI/EcoRV boundary library. The library is arrayed in microtiter plates. When clones from a single plate are pooled and mixed with genomic DNA, the resultant RLGS gel is a normal profile with a defined set of spots showing enhanced intensity for that particular plate. This was performed for a set of 32 plates as well as their pooled rows and columns. Thus, we have mapped individual RLGS spots to exact plate, row, and column addresses in the library and have thereby obtained immediate access to these clones. The feasibility of the technique is demonstrated in examples of cloning methylated DNA fragments identified in human breast tumor and testicular tumor RLGS profiles and in the cloning of an amplified DNA fragment identified in a human medulloblastoma RLGS profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号