首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A yeast with the xylose isomerase (XI) pathway was constructed by the multicopy integration of XI overexpression cassettes into the genome of the Saccharomyces cerevisiae MT8-1 strain. The resulting yeast strain successfully produced ethanol from both xylose as the sole carbon source and a mixed sugar, consisting of xylose and glucose, without any adaptation procedure. Ethanol yields in the fermentation from xylose and mixed sugar were 61.9% and 62.2% of the theoretical carbon recovery, respectively. Knockout of GRE3, a gene encoding nonspecific aldose reductase, of the host yeast strain improved the fermentation profile. Not only specific ethanol production rates but also xylose consumption rates was improved more than twice that of xylose-metabolizing yeast with the XI pathway using GRE3 active yeast as the host strain. In addition, it was demonstrated that xylitol in the medium exhibits a concentration-dependent inhibition effect on the ethanol production from xylose with the yeast harboring the XI-based xylose metabolic pathway. From our findings, the combination of XI-pathway integration and GRE3 knockout could be result in a consolidated xylose assimilation pathway and increased ethanol productivity.  相似文献   

2.
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S. cerevisiae cells. Strains expressing the heterologous transporters were grown on glucose and xylose mixtures. Sugar consumption rates and ethanol concentrations were determined and compared to an isogenic control strain lacking the A. thaliana transporters. Expression of the transporters increased xylose uptake and xylose consumption up to 46% and 40%, respectively. Xylose co-consumption rates (prior to glucose depletion) were also increased by up to 2.5-fold compared to the control strain. Increased xylose consumption correlated with increased ethanol concentration and productivity. During the xylose/glucose co-consumption phase, strains expressing the transporters had up to a 70% increase in ethanol production rate. It was concluded that in these strains, xylose transport was a limiting factor for xylose utilization and that increasing xylose/glucose co-consumption is a viable strategy for improving xylose fermentation.  相似文献   

3.
When xylose metabolism in yeasts proceeds exclusively via NADPH-specific xylose reductase and NAD-specific xylitol dehydrogenase, anaerobic conversion of the pentose to ethanol is intrinsically impossible. When xylose reductase has a dual specificity for both NADPH and NADH, anaerobic alcoholic fermentation is feasible but requires the formation of large amounts of polyols (e.g., xylitol) to maintain a closed redox balance. As a result, the ethanol yield on xylose will be sub-optimal. This paper demonstrates that anaerobic conversion of xylose to ethanol, without substantial by-product formation, is possible in Saccharomyces cerevisiae when a heterologous xylose isomerase (EC 5.3.1.5) is functionally expressed. Transformants expressing the XylA gene from the anaerobic fungus Piromyces sp. E2 (ATCC 76762) grew in synthetic medium in shake-flask cultures on xylose with a specific growth rate of 0.005 h(-1). After prolonged cultivation on xylose, a mutant strain was obtained that grew aerobically and anaerobically on xylose, at specific growth rates of 0.18 and 0.03 h(-1), respectively. The anaerobic ethanol yield was 0.42 g ethanol x g xylose(-1) and also by-product formation was comparable to that of glucose-grown anaerobic cultures. These results illustrate that only minimal genetic engineering is required to recruit a functional xylose metabolic pathway in Saccharomyces cerevisiae. Activities and/or regulatory properties of native S. cerevisiae gene products can subsequently be optimised via evolutionary engineering. These results provide a gateway towards commercially viable ethanol production from xylose with S. cerevisiae.  相似文献   

4.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

5.
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.  相似文献   

6.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

7.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

8.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

9.
Baker's yeast (Saccharomyces cerevisiae) has been genetically engineered to ferment the pentose sugar xylose present in lignocellulose biomass. One of the reactions controlling the rate of xylose utilization is catalyzed by xylose reductase (XR). In particular, the cofactor specificity of XR is not optimized with respect to the downstream pathway, and the reaction rate is insufficient for high xylose utilization in S. cerevisiae. The current study describes a novel approach to improve XR for ethanol production in S. cerevisiae. The cofactor binding region of XR was mutated by error-prone PCR, and the resulting library was expressed in S. cerevisiae. The S. cerevisiae library expressing the mutant XR was selected in sequential anaerobic batch cultivation. At the end of the selection process, a strain (TMB 3420) harboring the XR mutations N272D and P275Q was enriched from the library. The V(max) of the mutated enzyme was increased by an order of magnitude compared to that of the native enzyme, and the NADH/NADPH utilization ratio was increased significantly. The ethanol productivity from xylose in TMB 3420 was increased ~40 times compared to that of the parent strain (0.32 g/g [dry weight {DW}] × h versus 0.007 g/g [DW] × h), and the anaerobic growth rate was increased from ~0 h(-1) to 0.08 h(-1). The improved traits of TMB 3420 were readily transferred to the parent strain by reverse engineering of the mutated XR gene. Since integrative vectors were employed in the construction of the library, transfer of the improved phenotype does not require multicopy expression from episomal plasmids.  相似文献   

10.
11.
To improve the ability of recombinant Saccharomyces cerevisiae strains to utilize the hemicellulose components of lignocellulosic feedstocks, the efficiency of xylose conversion to ethanol needs to be increased. In the present study, xylose-fermenting, haploid, yeast cells of the opposite mating type were hybridized to produce a diploid strain harboring two sets of xylose-assimilating genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase. The hybrid strain MN8140XX showed a 1.3- and 1.9-fold improvement in ethanol production compared to its parent strains MT8-1X405 and NBRC1440X, respectively. The rate of xylose consumption and ethanol production was also improved by the hybridization. This study revealed that the resulting improvements in fermentation ability arose due to chromosome doubling as well as the increase in the copy number of xylose assimilation genes. Moreover, compared to the parent strain, the MN8140XX strain exhibited higher ethanol production under elevated temperatures (38 °C) and acidic conditions (pH 3.8). Thus, the simple hybridization technique facilitated an increase in the xylose fermentation activity.  相似文献   

12.
13.
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD?-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l?1 h?1 xylose consumption rate, 0.25 g l?1 h?1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only.  相似文献   

14.
The Thermus thermophilus xylA gene encoding xylose (glucose) isomerase was cloned and expressed in Saccharomyces cerevisiae under the control of the yeast PGK1 promoter. The recombinant xylose isomerase showed the highest activity at 85 degrees C with a specific activity of 1.0 U mg-1. A new functional metabolic pathway in S. cerevisiae with ethanol formation during oxygen-limited xylose fermentation was demonstrated. Xylitol and acetic acid were also formed during the fermentation.  相似文献   

15.
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.  相似文献   

16.
Thermo-tolerant yeast Kluyveromyces marxianus is able to utilize a wide range of substrates, including xylose; however, the xylose fermentation ability is weak because of the redox imbalance under oxygen-limited conditions. Alleviating the intracellular redox imbalance through engineering the coenzyme specificity of NADPH-preferring xylose reductase (XR) and improving the expression of XR should promote xylose consumption and fermentation. In this study, the native xylose reductase gene (Kmxyl1) of the K. marxianus strain was substituted with XR or its mutant genes from Pichia stipitis (Scheffersomyces stipitis). The ability of the resultant recombinant strains to assimilate xylose to produce xylitol and ethanol at elevated temperature was greatly improved. The strain YZB014 expressing mutant PsXR N272D, which has a higher activity with both NADPH and NADH as the coenzyme, achieved the best results, and produced 3.55 g l?1 ethanol and 11.32 g l?1 xylitol—an increase of 12.24- and 2.70-fold in product at 42 °C, respectively. A 3.94-fold increase of xylose consumption was observed compared with the K. marxianus YHJ010 harboring KmXyl1. However, the strain YZB015 expressing a mutant PsXR K21A/N272D, with which co-enzyme preference was completely reversed from NADPH to NADH, failed to ferment due to the low expression. So in order to improve xylose consumption and fermentation in K. marxianus, both higher activity and co-enzyme specificity change are necessary.  相似文献   

17.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

18.
The yeast Saccharomyces cerevisiae efficiently ferments hexose sugars to ethanol, but it is unable to utilize xylose, a pentose sugar abundant in lignocellulosic materials. Recombinant strains containing genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) from the xylose-utilizing yeast Pichia stipitis have been reported; however, such strains ferment xylose to ethanol poorly. One reason for this may be the low capacity of xylulokinase, the third enzyme in the xylose pathway. To investigate the potential limitation of the xylulokinase step, we have overexpressed the endogenous gene for this enzyme (XKS1) in S. cerevisiae that also expresses the P. stipitis genes for XR and XDH. The metabolism of this recombinant yeast was further investigated in pure xylose bioreactor cultivation at various oxygen levels. The results clearly indicated that overexpression of XKS1 significantly enhances the specific rate of xylose utilization. In addition, the XK-overexpressing strain can more efficiently convert xylose to ethanol under all aeration conditions studied. One of the important illustrations is the significant anaerobic and aerobic xylose conversion to ethanol by the recombinant Saccharomyces; moreover, this was achieved on pure xylose as a carbon. Under microaerobic conditions, 5.4 g L(-1) ethanol was produced from 47 g L(-1) xylose during 100 h. In fed-batch cultivations using a mixture of xylose and glucose as carbon sources, the specific ethanol production rate was highest at the highest aeration rate tested and declined by almost one order of magnitude at lower aeration levels. Intracellular metabolite analyses and in vitro enzyme activities suggest the following: the control of flux in a strain that overexpresses XKS1 has shifted to the nonoxidative steps of the pentose phosphate pathway (i.e., downstream of xylose 5-phosphate), and enzymatic steps in the lower part of glycolysis and ethanol formation pathways (pyruvate kinase, pyruvate decarboxylase, and alcohol dehydrogenase) do not have a high flux control in this recombinant strain. Furthermore, the intracellular ATP levels were found to be significantly lower for the XK strain compared with either the control strain under similar conditions or glucose-grown Saccharomyces. The ATP : ADP ratios were also lower for the XK strain, especially under microaerobic conditions (0.9 vs 6.4).  相似文献   

19.
Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.  相似文献   

20.
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD(+). In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g(-1)) and the lowest xylitol yield (0.05 g g(-1)) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号