首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olfaction involves a dual sensory process for perceiving odors orthonasally (through the nostrils) and retronasally (through the mouth). This investigation entailed developing a measure of sensitivity to an odor delivered in an orally sampled food (orange flavoring in a sucrose-sweetened gelatin) and examining sensitivity in the elderly. In experiment 1, olfactory flavor sensitivity was 49 times lower in elderly (n = 21) than in young (n = 28) subjects. In experiment 2, with 73 elderly women, higher olfactory flavor sensitivity correlated significantly with higher orthonasal perception (Connecticut Chemosensory Clinical Research Center test). Some women, however, exhibited low olfactory flavor sensitivity despite high orthonasal perception; none had high olfactory flavor sensitivity and low orthonasal perception. Those who wore complete or palatal covering dentures had lower olfactory flavor sensitivity than those who were dentate or wore dentures that did not cover the palate. Through multiple regression analysis, orthonasal perception and denture status were found to be independent contributors to predicting olfactory flavor sensitivity. In summary, elderly subjects showed depressed olfactory flavor sensitivity (i.e. retronasal sensitivity) that related to poor orthonasal olfactory perception and denture characteristic. Thus, while good orthonasal olfaction may be necessary for good olfactory flavor sensitivity, it is not sufficient. Other factors, some associated with oral conditions, may impede release and retronasal transport of odors from the mouth to the olfactory receptors.  相似文献   

2.
Small DM  Gerber JC  Mak YE  Hummel T 《Neuron》2005,47(4):593-605
Odors perceived through the mouth (retronasally) as flavor are referred to the oral cavity, whereas odors perceived through the nose (orthonasally) are referred to the external world. We delivered vaporized odorants via the orthonasal and retronasal routes and measured brain response with fMRI. Comparison of retronasal versus orthonasal delivery produced preferential activity in the mouth area at the base of the central sulcus, possibly reflecting olfactory referral to the mouth, associated with retronasal olfaction. Routes of delivery produced differential activation in the insula/operculum, thalamus, hippocampus, amygdala, and caudolateral orbitofrontal cortex in orthonasal > retronasal and in the perigenual cingulate and medial orbitofrontal cortex in retronasal > orthonasal in response to chocolate, but not lavender, butanol, or farnesol, so that an interaction of route and odorant may be inferred. These findings demonstrate differential neural recruitment depending upon the route of odorant administration and suggest that its effect is influenced by whether an odorant represents a food.  相似文献   

3.
Odors often produce different sensations when presented in front of the nose or intraorally, when eaten. It is a long-standing question whether these differences in sensations are due, for example, to the additional mechanical sensations elicited by the food in the mouth or additional odor release during mastication. To study this phenomenon in detail, a stimulation technique has been developed that allows controlled ortho- or retronasal presentation of odorous stimuli. Results from psychophysical, electrophysiological, and imaging studies suggest that there are clear differences in the perception of ortho- and retronasal stimuli. This 'duality of the sense of smell' is also observed in a clinical context where some patients exhibit good retronasal olfactory function with little or no orthonasal function left, and vice versa. The differences between ortho- and retronasal perception of odors are thought to be, at least partly, due to absorption of odors to the olfactory epithelium, which appears to differ in relation to the direction of the airflow across the olfactory epithelium.  相似文献   

4.
The effect of color on orthonasal and retronasal odor intensities was investigated. When odorants were smelled orthonasally (i.e., through the nostrils), color enhanced odor intensity ratings, consistent with previous reports. However, when odorants were smelled retronasally (i.e., the odorous solution was put in the mouth), color reduced odor intensity ratings. These different effects of color on odor intensity (i.e., enhancement orthonasally and suppression retronasally) appear to be the result of route of olfactory stimulation rather than of any procedural artifact. This supports previous reports that retronasal and orthonasal odors are perceived differently.  相似文献   

5.
Following up on recent observations in patients with nasal polyposis (NP), the present study aimed to investigate whether a mechanical obstruction of the anterior olfactory cleft (OC) would produce differential effects on orthonasal and retronasal olfactory functions. To this end, we studied 33 healthy subjects in a randomized trial. Sponges with high content of saline were either placed in the OC or on the respiratory epithelium, such that this was blinded to both subject and observer. The results indicated that orthonasal (P = 0.04) but not retronasal (P = 0.15) olfactory identification ability was lower when the OC was blocked. This confirms the idea that differences between orthonasal and retronasal olfactory functions, as observed in NP patients, are, at least to some degree, due to mechanical obstruction of the anterior portion of the OC. The present data also suggest that mechanical obstruction is a means to induce reversible hyposmia void of side effects which can be performed in a blinded fashion. This might become a valuable model of hyposmia for future investigations.  相似文献   

6.
The neuroscience of flavor perception is hence becoming increasingly important to understand food flavor perception that guides food selection, ingestion and appreciation. We recently provided evidence that rats can use the retronasal mode of olfaction, an essential element of human flavor perception. We showed that in rats, like humans, odors can acquire a taste. We and others also defined how the input of the olfactory bulb (OB) -not functionally imageable in humans- codes retronasal smell in anesthetized rat. The powerful awake transgenic mouse, however, would be a valuable additional model in the study of flavor neuroscience. We used a go/no-go behavioral task to test the mouse''s ability to detect and discriminate the retronasal odor amyl acetate. In this paradigm a tasteless aqueous odor solution was licked by water-restricted head-fixed mice from a lick spout. Orthonasal contamination was avoided. The retronasal odor was successfully discriminated by mice against pure distilled water in a concentration-dependent manner. Bulbectomy removed the mice''s ability to discriminate the retronasal odor but not tastants. The OB showed robust optical calcium responses to retronasal odorants in these awake mice. These results suggest that mice, like rats, are capable of smelling retronasally. This direct neuro-behavioral evidence establishes the mouse as a useful additional animal model for flavor research.  相似文献   

7.
Several studies have investigated the orthonasal detection threshold for carbon dioxide (CO(2)) in humans. The aim of current study was to investigate whether 24 healthy young subjects exhibited differences of CO(2) detection thresholds during orthonasal or retronasal stimulation. As nasal mucosa is believed to desensitize to CO(2) concentrations at or below 4% (v/v) during expiration, the second aim of the study was to explore the influence during nasal versus oral breathing on the detection thresholds. CO(2) stimuli of varying concentrations and a duration of 1000 ms were applied with an air-dilution olfactometer in either the anterior nasal cavity or the nasopharynx during nasal respectively oral breathing. In these 4 conditions, the mean CO(2) detection thresholds using the staircase forced-choice procedure were between 3.9% and 5.3% (v/v). Statistical analysis revealed a significant difference between orthonasal and retronasal stimulation. The CO(2) detection threshold was lower in retronasal stimulation. The nasopharyngeal mucosa is more sensitive to perithreshold CO(2) stimuli than the nasal mucosa. The breathing route had no influence on the detection thresholds. The results of this study indicate that the natural contact of the nasal mucosa with approximately 4% (v/v) CO(2) during nasal expiration does not influence CO(2) detection thresholds.  相似文献   

8.
The sense of smell is perceived by olfactory receptor neurons (ORN) present in the olfactory epithelium located in the posterosuperior aspect of the nasal cavity. The axons of these ORN migrate to the olfactory bulb (OB), forming a nervous layer on the outermost part of the bulb, and finally synapse in glomerular structures in the OB. The ORN are unique in that they are constantly being renewed throughout life. We characterized the defects in the nasal cavity and olfactory nervous supply of Twirler (Tw) mice by histological and immunohistochemical means. Tw homozygotes have previously been shown to present with midfacial abnormalities in the form of clefts of the lip and palate (Lyon, 1958; Gong et al., 2000). We found that in the Tw homozygotes, the OB was abnormally shaped, the skeletal framework underlying the OB was disrupted, and the morphology of the nasal cavity was altered with poorly defined nasal turbinates. Immunohistochemical staining with antibodies that marked nerves in general (PGP 9.5) and mature ORN (omp) in the olfactory epithelium at two different embryonic stages and in newborn mice revealed the stratification of the olfactory epithelium in Tw homozygotes, albeit slightly thinner compared to wildtype. A striking difference in the olfactory epithelium was the lack of differentiation of the ORN in Tw homozygotes and the reduced axonal input to the OB. In Tw homozygotes at 14.5 days of embryonic development, the presence of many mature ORN found randomly in the mesenchyme suggests the loss of olfactory pathfinding cues to the OB. It is believed that the lack of appropriate pathfinding cues observed in the Tw homozygotes was responsible for the OB not having the appropriate trophic effect on the development and maturation of the ORN as had been observed in partially bulbectomized animals. The defects in the Twirler may prove to be a valuable system to analyze problems in olfactory pathfinding and maturation.  相似文献   

9.
Selected free fatty acids (FFAs) are documented effective somatosensory and olfactory stimuli whereas gustatory effects are less well established. This study examined orthonasal olfactory, retronasal olfactory, nasal irritancy, oral irritancy, gustatory, and multimodal threshold sensitivity to linoleic, oleic, and stearic acids. Sensitivity to oxidized linoleic acid was also determined. Detection thresholds were obtained using a three-alternative, forced-choice, ascending concentration presentation procedure. Participants included 22 healthy, physically fit adults sensitive to 6-n-propylthiouracil. Measurable thresholds were obtained for all FFAs tested and in 96% of the trials. Ceiling effects were observed in the remaining trials. Greater sensitivity was observed for multimodal stimulation and lower sensitivity for retronasal stimulation. There were no statistically significant correlations for linoleic acid thresholds between different modalities, suggesting that each route of stimulation contributes independently to fat perception. In summary, 18-carbon FFAs of varying saturation are detected by multiple sensory systems in humans.  相似文献   

10.
Subjects were trained to identify by assigned number commonsubstances presented as vapor phase stimuli via an orthonasalor a retronasal route. Following training, odorant identificationlearning was evaluated by measuring ability to correctly identifyto a criterion. Those who met the criterion were then testedfirst with the stimuli presented to the nares that differedin location from the nares used in training, and second to thenares that corresponded in location to the nares used in training.It was found that, under conditions of natural retronasal breathing,orthonasally trained subjects made correct identifications on{small tilde}80% of the trials upon retronasal testing, butfor the following orthonasal testing identifications were significantlymore frequent, approaching 100% correct. After subsequent retronasaltraining, the same subjects' orthonasal identifications remainedsignificantly higher, although identifications improved to {smalltilde}92% correct on retronasal trials. Other subjects wereinstructed in a breathing technique designed to enhance retronasalstimulation. After orthonasal training, retronasal testing ofthese subjects still gave significantly fewer correct identificationsthan orthonasal testing, notwithstanding the modified retronasalbreathing, but after subsequent retronasal training correctidentifications by these subjects no longer differed significantlybetween orthonasal and retronasal testing. Efficacy of modifiedretronasal breathing was confirmed in two subsequent experiments.The observed substantial positive transfers between retronasaland orthonasal odorant identification training and testing locidemonstrate that these odorant pathways do not subserve completelyindependent olfactory systems, while the less accurate identificationsvia the retronasal route, unless instruction in retronasal breathingwas given, suggest a difference in the efficiency with whichodorants are normally delivered to the olfactory mucosa. Chem.Senses 21: 529–543, 1996.  相似文献   

11.
During food intake flavor perception results from simultaneous stimulation of the gustatory, olfactory and trigeminal systems. Olfactory stimulation occurs mainly through the retronasal pathway and the resulting perception is often interpreted as a taste perception, thus leading to the well-known sensory confusion between taste and olfaction. The present experiment was designed to study, with functional magnetic resonance imaging (fMRI), the cortical representation of olfactory perception in humans in response to retronasal stimulation by odorants delivered in aqueous solution. Psychophysical evaluation confirmed that the stimuli acted as pure olfactory stimuli through the retronasal pathway and did not present any taste component. Results showed activation in all brain regions previously described with neuroimaging techniques using olfactory stimulation with an odorized air flow. Piriform and orbitofrontal cortex were found activated as well as the hippocampal region, the amygdala, the insular lobe, the cingulate gyrus and the cerebellum. These results demonstrate the feasibility of efficiently stimulating the olfactory system in an fMRI scanner through the retronasal pathway with liquids delivered to the oral cavity. The presentation of olfactory stimuli in liquids to the mouth is a realistic model for the study of food-related flavor perception. This stimulation protocol furthermore allows presenting taste and olfactory stimuli separately or combined, thus allowing for direct comparisons between single modality representation, taste or olfaction, and representation of multi-modality mixtures.  相似文献   

12.
果蝇嗅觉分子机理研究进展   总被引:2,自引:0,他引:2  
黑腹果蝇Drosophila melanogaster是生物学研究的重要模式生物,也是探索研究生物体嗅觉奥秘的理想材料。近年来,由于分子生物学技术在神经科学领域的广泛应用,黑腹果蝇嗅觉机理研究取得了许多重大突破, 对气味分子受体及其识别机理、 嗅觉神经电信号的产生和传递、嗅觉信息的加工、编码以及记忆等方面都有了深入的了解。研究表明, 果蝇约1 300个嗅神经元(olfactory receptor neurons, ORNs)共表达62种不同的气味受体蛋白(olfactory receptor proteins, ORs), 用以检测和识别其所感受的所有化学气味分子。许多OR所识别的气味分子配体已鉴定出来,普通的气味(如水果的气味)由数种不同的OR组合来识别,而信息素(pheromone)分子则由单种特定的OR来检测。气味信息在嗅神经元内转换成神经电信号,嗅觉电信号沿嗅神经元的轴突传递到触角叶, 再经投射神经元(projection neurons, PNs)将信息送至高级中枢如蘑菇体(mushroom body, MB)和侧角(lateral horn, LH),最终引发行为反应。在黑腹果蝇嗅觉信息传递通路中,某些蛋白如Dock,N-cadherin,Fruitless等起着重要作用,缺失这些蛋白会导致嗅觉异常。本文对这些研究进展作一综述。  相似文献   

13.
Sight is undoubtedly important for finding and appreciating food, and cooking. Blind individuals are strongly impaired in finding food, limiting the variety of flavours they are exposed to. We have shown before that compared to sighted controls, congenitally blind individuals have enhanced olfactory but reduced taste perception. In this study we tested the hypothesis that congenitally blind subjects have enhanced orthonasal but not retronasal olfactory skills. Twelve congenitally blind and 14 sighted control subjects, matched in age, gender and body mass index, were asked to identify odours using grocery-available food powders. Results showed that blind subjects were significantly faster and tended to be better at identifying odours presented orthonasally. This was not the case when odorants were presented retronasally. We also found a significant group x route interaction, showing that although both groups performed better for retronasally compared to orthonasally presented odours, this gain was less pronounced for blind subjects. Finally, our data revealed that blind subjects were more familiar with the orthonasal odorants and used the retronasal odorants less often for cooking than their sighted counterparts. These results confirm that orthonasal but not retronasal olfactory perception is enhanced in congenital blindness, a result that is concordant with the reduced food variety exposure in this group.  相似文献   

14.
综述了磁共振脑功能成像(functional MRI,fMRI)在嗅觉研究中的应用,着重介绍fMRI在小动物嗅觉研究中的优势,以及近10年来fMRI在嗅球(olfactory bulb,OB)信息编码、处理和传输机制研究中所取得的进展.作为人类最古老的感觉方式之一,整个嗅觉系统(除鼻腔中的嗅细胞)都属于边缘系统,这赋予嗅觉系统一般的感觉功能和许多不为人所熟知的对情感、记忆以及生理和心理状态调控的功能.同时,由于缺乏有效手段,其内在性也使得嗅觉系统在大脑中的信息编码、处理、传输和感知等机制的研究极为困难.fMRI由于具有相对高的时间和空间分辨率,并可以无创地、重复地观测大脑任何部位的神经活动而被广泛应用于神经科学的研究.fMRI在嗅觉系统的应用使我们对人的嗅觉高级中枢感知机制方面的研究取得了一定的进展,而嗅球为嗅觉信息编码和处理中心,由于其尺寸和人体MRI空间分辨率的限制,对人OB中编码机制的研究一直无法进行.  相似文献   

15.
Perceptual interactions in a model of wine woody-fruity binary mixtures were previously reported in a psychophysical study performed through orthonasal stimulation only. However, recent studies suggested that the perception of food-like and nonfood-like odors may depend on the route of stimulation. The aim of the present study was two-fold: first to examine the neural correlates of perceptual interactions using electroencephalogram (EEG)-derived event-related potentials (ERPs) and second to test the influence of the stimulation route on quality perception. Therefore, we designed an experiment with 30 subjects to study perceptual interactions in woody-fruity mixtures and compared ortho- vs. retronasal stimulation sites on perceived odor quality and ERPs. The results revealed synergy or masking of the fruity component, depending on the woody component level. Synergy was supported by larger N1 amplitude of the ERP. Furthermore, mixtures including a medium level of the woody odor elicited a strong increase of P2 amplitude only retronasally. This study evidenced for the first time electrophysiological correlates of both perceptual synergy and masking on the early component of the ERPs and confirmed that retro- vs. orthonasal stimulation route induces different neural processes that are reflected in the late component of the ERP.  相似文献   

16.
Izotov VA  Voronkov GS 《Biofizika》2002,47(5):914-919
Psychophysical phenomena typical of olfaction were reproduced using a computer model of olfactory bulb. The procedure of numerical experiments is described. The model reproduces the following phenomena: fusion of odors, strong and weak odors, suppression of weak odors by strong odors, indemnity of odors, changes in odor with time, consecutive olfactory images, sensibilization, consecutive olfactory constrast, and synergims. It was concluded that computer-assisted experimentation in combination with neurophysiological and psychophysical experiments can considerably increase the efficiency of research of odorants and the olfaction process.  相似文献   

17.
This study aimed to determine whether there are regional influences on attitudes toward olfaction. A total of 1082 participants aged 21-50 years from 4 different regions (Mexican, Korean, Czech, and German) were asked to rate general attitudes toward olfaction in everyday life. To examine affective attitudes to odors (i.e., pleasantness), participants were also asked to list 3 odors as being the most pleasant or unpleasant, respectively. Next, the mentioned odor names were attributed to 1 of 4 main categories: "Food & Drink," "Social relationship," "Nature," and "Civilization" and the distribution of these categories was compared across regions. Mexicans were significantly different to the other regions in their general attitudes toward olfaction. In addition, in all regions, in comparison with men, women indicated a higher interest in the sense of smell. Moreover, a significant positive correlation was present between individuals' self-rating of olfactory sensitivity and general attitudes toward olfaction. Finally, there were significant cross-regional differences in affective attitudes toward specific categories of odors. In conclusion, our findings support and extend the notion that regions affect attitudes toward the olfactory world.  相似文献   

18.
Sun BC  Halpern BP 《Chemical senses》2005,30(8):693-706
Identifications (IDs) of paired retronasal and orthonasal odorants were studied, with stimuli limited to air phase. Odorants were liquid extracts of plant materials, sold as food flavorings, matched by each subject both for retronasal-only and orthonasal-only air phase intensities and then learned to 100% correct veridical name retronasal-only and orthonasal-only IDs. Subjects were tested for ID of (a) retronasal-only and orthonasal-only odorants, (b) homogeneously paired odorant (the same odorant in retronasal and orthonasal locations), and (c) heterogeneously paired odorants (different odorants in retronasal and orthonasal locations). Paired odorants were presented in two different sequences: retronasal location odorant smelled first or orthonasal location odorant smelled first. IDs were reported after odorants were removed. Results were as follows: (a) no significant differences between correct ID of odorants when in retronasal-only versus orthonasal-only locations, although percent correct IDs were lower for half the retronasal-only location odorants; (b) correct ID of a homogeneously paired odorant equaled or exceeded its unpaired ID, with two successive, identical IDs reported on the majority of its trials; (c) with heterogeneous pairs, for all odorants when in the orthonasal location of a pair, correct ID occurred less often than when these odorants were presented orthonasal-only, but for odorants in the retronasal location, correct ID equaled or exceeded retronasal-only correct ID; and (d) perceived order of presentation of heterogeneous pairs was the reverse of the physically presented sequence for both retronasal-first and orthonasal-first conditions. The heterogeneous odorant ID outcome supports the concept that processing of retronasal and orthonasal odorants differ, and the perceived reversal of the presented sequence is in agreement with the importance of recency in odorant memory.  相似文献   

19.
In mammals, olfaction is mediated by two distinct organs that are located in the nasal cavity: the main olfactory epithelium (MOE) that binds volatile odorants is responsible for the conscious perception of odors, and the vomeronasal organ (VNO) that binds pheromones is responsible for various behavioral and neuroendocrine responses between individuals of a same species. Odorants and pheromones bind to seven transmembrane domain G-protein-coupled receptors that permit signal transduction. These receptors are encoded by large multigene families that evolved in mammal species in function of specific olfactory needs.  相似文献   

20.
Wachowiak M 《Neuron》2011,71(6):962-973
Sensation is an active process involving the sampling and central processing of external stimuli selectively in space and time. Olfaction in particular depends strongly on active sensing due to the fact that-at least in mammals-inhalation of air into the nasal cavity is required for odor detection. This seemingly simple first step in odor sensation profoundly shapes nearly all aspects of olfactory system function, from the distribution of odorant receptors to the functional organization of central processing to the perception of odors. The dependence of olfaction on inhalation also allows for profound modulation of olfactory processing by changes in odor sampling strategies in coordination with attentional state and sensory demands. This review discusses the role of active sensing in shaping olfactory system function at multiple levels and draws parallels with other sensory modalities to highlight the importance of an active sensing perspective in understanding how sensory systems work in the behaving animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号