首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explores the relationship between anti-proliferative signaling by transforming growth factor-beta (TGF-beta) and insulin-like growth factor-binding protein-3 (IGFBP-3) in human breast cancer cells. In MCF-7 cells, the expression of recombinant IGFBP-3 inhibited proliferation and sensitized the cells to further inhibition by TGF-beta1. To investigate the mechanism, we used T47D cells that lack type II TGF-beta receptor (TGF-betaRII) and are insensitive to TGF-beta1. After introducing the TGF-betaRII by transfection, the basal proliferation rate was significantly decreased. Exogenous TGF-beta1 caused no further growth inhibition, but immunoneutralization of endogenous TGF-beta1 restored the proliferation rate almost to the control level. The addition of IGFBP-3 did not inhibit the proliferation of control cells but caused dose-dependent inhibition in TGF-betaRII-expressing cells when exogenous TGF-beta1 was also present. Similarly, receptor-expressing cells showed dose-dependent sensitivity to exogenous TGF-beta1 only in the presence of exogenous IGFBP-3. This indicates that in these cells, anti-proliferative signaling by exogenous IGFBP-3 requires both the TGF-betaRII and exogenous TGF-beta1. To investigate this synergism, the phosphorylation of TGF-beta signaling intermediates, Smad2 and Smad3, was measured. Phosphorylation of each Smad was stimulated by TGF-beta1 and, independently, by IGFBP-3 with the two agents together showing a cumulative effect. These data suggest that IGFBP-3 inhibitory signaling requires an active TGF-beta signaling pathway and implicate Smad2 and Smad3 in IGFBP-3 signal transduction.  相似文献   

2.
We have shown that human intestinal smooth muscle cells produce IGF-I and IGF binding protein-3 (IGFBP-3). Endogenous IGF-I acts in autocrine fashion to stimulate growth of these cells. IGFBP-3 inhibits the binding of IGF-I to its receptor and thereby inhibits IGF-I-stimulated growth. In several carcinoma cell lines and some normal cells, IGFBP-3 regulates growth independently of IGF-I. Two mechanisms for this effect have been identified: IGFBP-3 can directly activate transforming growth factor-beta (TGF-beta) receptors or it can undergo direct nuclear translocation. The aim of the present study was to determine whether IGFBP-3 acts independently of IGF-I and to characterize the mechanisms mediating this effect in human intestinal smooth muscle cells. The direct effects of IGFBP-3 were determined in the presence of an IGF-I receptor antagonist to eliminate its IGF-I-dependent effects. Affinity labeling of TGF-beta receptors (TGF-betaRI, TGF-betaRII, and TGF-betaRV) with 125I-labeled TGF-beta1 showed that IGFBP-3 displaced binding to TGF-betaRII and TGF-betaRV in a concentration-dependent fashion. IGFBP-3 stimulated TGF-betaRII-dependent serine phosphorylation (activation) of both TGF-betaRI and of its primary substrate, Smad2(Ser465/467). IGFBP-3 also caused IGF-I-independent inhibition of basal [3H]thymidine incorporation. The effects of IGFBP-3 on Smad2 phosphorylation and on smooth muscle cell proliferation were independent of TGF-beta1 and were abolished by transfection of Smad2 siRNA. Immunoneutralization of IGFBP-3 increased basal [3H]thymidine incorporation, implying that endogenous IGFBP-3 inhibits proliferation. We conclude that endogenous IGFBP-3 directly inhibits proliferation of human intestinal smooth muscle cells by activation of TGF-betaRI and Smad2, an effect that is independent of its effect on IGF-I-stimulated growth.  相似文献   

3.
Secreted protein, acidic and rich in cysteine (SPARC) is a multifunctional secreted protein that regulates cell-cell and cell-matrix interactions, leading to alterations in cell adhesion, motility, and proliferation. Although SPARC is expressed in epithelial cells, its ability to regulate epithelial cell growth remains largely unknown. We show herein that SPARC strongly inhibited DNA synthesis in transforming growth factor (TGF)-beta-sensitive Mv1Lu cells, whereas moderately inhibiting that in TGF-beta-insensitive Mv1Lu cells (i.e., R1B cells). Overexpression of dominant-negative Smad3 in Mv1Lu cells, which abrogated growth arrest by TGF-beta, also attenuated growth arrest stimulated by SPARC. Moreover, the extracellular calcium-binding domain of SPARC (i.e., SPARC-EC) was sufficient to inhibit Mv1Lu cell proliferation but not that of R1B cells. Similar to TGF-beta and thrombospondin-1, treatment of Mv1Lu cells with SPARC or SPARC-EC stimulated Smad2 phosphorylation and Smad2/3 nuclear translocation: the latter response to all agonists was abrogated in R1B cells or by pretreatment of Mv1Lu cells with neutralizing TGF-beta antibodies. SPARC also stimulated Smad2 phosphorylation in MB114 endothelial cells but had no effect on bone morphogenetic protein-regulated Smad1 phosphorylation in either Mv1Lu or MB114 cells. Finally, SPARC and SPARC-EC stimulated TGF-beta-responsive reporter gene expression through a TGF-beta receptor- and Smad2/3-dependent pathway in Mv1Lu cells. Collectively, our findings identify a novel mechanism whereby SPARC inhibits epithelial cell proliferation by selectively commandeering the TGF-beta signaling system, doing so through coupling of SPARC-EC to a TGF-beta receptor- and Smad2/3-dependent pathway.  相似文献   

4.
Smad7 has been identified as a negative regulator of transforming growth factor beta (TGF-beta) signaling by interfering with the phosphorylation of other Smad proteins by TGF-beta receptor type I (TbetaRI). We established a mink lung epithelial (Mv1Lu) cell line where ectopic expression of Smad7 is tightly controlled by doxycycline using an improved Tet-on system. Once induced by doxycycline, the recombinant Smad7 was localized predominantly in the perinuclear region and in the cytoplasm. However, the type of culture surface alters the subcellular localization of Smad7: on plastic or on fibronectin-coated glass, Smad7 was localized in the cytoplasm; but when the cells were cultured on glass, nuclear localization was observed. TGF-beta stimulation did not alter substantially the cellular distribution of Smad7. Importantly, the expression of recombinant Smad7 differentially inhibited TGF-beta signaling pathways. Consistent with previous studies, Smad7 inhibited TGF-beta-stimulated induction of type 1 plasminogen activator inhibitor as measured by p3TP-Lux reporter. However, expression of Smad7 had little effect on TGF-beta-induced growth inhibition.  相似文献   

5.
6.
Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.  相似文献   

7.
High affinity insulin-like growth factor-binding proteins (IGFBP-1 to -6) are a family of structurally homologous proteins that induce cellular responses by insulin-like growth factor (IGF)-dependent and -independent mechanisms. The IGFBP-3 receptor, which mediates the IGF-independent growth inhibitory response, has recently been identified as the type V transforming growth factor-beta receptor (TbetaR-V) (Leal, S. M., Liu, Q. L., Huang, S. S., and Huang, J. S. (1997) J. Biol. Chem. 272, 20572-20576). To characterize the interactions of high affinity IGFBPs with TbetaR-V, mink lung epithelial cells (Mv1Lu cells) were incubated with 125I-labeled recombinant human IGFBPs (125I-IGFBP-1 to -6) in the presence of the cross-linking agent disuccinimidyl suberate and analyzed by 5% SDS-polyacrylamide gel electrophoresis and autoradiography. 125I-IGFBP-3, -4, and -5 but not 125I-IGFBP-1, -2, and -6 bound to TbetaR-V as demonstrated by the detection of the approximately 400-kDa 125I-IGFBP.TbetaR-V cross-linked complex in the cell lysates and immunoprecipitates. The analyses of 125I-labeled ligand binding competition and DNA synthesis inhibition revealed that IGFBP-3 was a more potent ligand for TbetaR-V than IGFBP-4 or -5. Most of the high affinity 125I-IGFBPs formed dimers at the cell surface. The cell-surface dimer of 125I-IGFBP-3 preferentially bound to and was cross-linked to TbetaR-V in the presence of disuccinimidyl suberate. IGFBP-3 did not stimulate the cellular phosphorylation of Smad2 and Smad3, key transducers of the transforming growth factor-beta type I/type II receptor (TbetaR-I.TbetaR-II) heterocomplex-mediated signaling. These results suggest that IGFBP-3, -4, and -5 are specific ligands for TbetaR-V, which mediates the growth inhibitory response through a signaling pathway(s) distinct from that mediated by the TbetaR-I and TbetaR-II heterocomplex.  相似文献   

8.
Smad7 is overexpressed in 50% of human pancreatic cancers. COLO-357 pancreatic cancer cells engineered to overexpress Smad7 are resistant to the actions of transforming growth factor-beta1 (TGF-beta1) with respect to growth inhibition and cisplatin-induced apoptosis but not with respect to modulation of gene expression. To delineate the mechanisms underlying these divergent consequences of Smad7 overexpression, we studied the effects of Smad7 on TGF-beta1-dependent signaling pathways and cell cycle regulating proteins. TGF-beta1 induced the phosphorylation of MAPK, p38 MAPK, and AKT2 irrespective of the levels of Smad7, and inhibitors of these pathways did not alter TGF-beta1 actions on cell growth. By contrast, Smad7 overexpression interfered with TGF-beta1-mediated attenuation of cyclin A and B levels, inhibition of cdc2 dephosphorylation and CDK2 inactivation, up-regulation of p27, and the maintenance of the retinoblastoma protein (RB) in a hypophosphorylated state. Smad7 also suppressed TGF-beta1-mediated inhibition of E2F activity but did not alter TGF-beta1-mediated phosphorylation of Smad2, the nuclear translocation of Smad2/3/4, or DNA binding of the Smad2/3/4 complex. Although Smad7 did not associate with the type I TGF-beta receptor (TbetaRI), SB-431542, an inhibitor of the kinase activity of this receptor, blocked TGF-beta1-mediated effects on Smad-2 phosphorylation. These findings point toward a novel paradigm whereby Smad7 acts to functionally inactivate RB and de-repress E2F without blocking the activation of TbetaRI and the nuclear translocation of Smad2/3, thereby allowing for TGF-beta1 to exert effects in a cancer cell that is resistant to TGF-beta1-mediated growth inhibition.  相似文献   

9.
Wang P  Yu J  Yin Q  Li W  Ren X  Hao X 《Neurochemical research》2012,37(10):2076-2084
Glioma is one of the most malignant tumors in the central nervous system. As a peroxisome proliferator-activated receptor γ (PPAR-γ) activator, the thiazolidinediones (TZDs) induce growth arrest and cell death in a broad spectrum of tumor cells. In this study, we investigated the role of rosiglitazone in glioma cells. We found that rosiglitazone, a member of TZDs, suppresses growth of human glioma cell lines U87 and U251. Rosiglitazone also induces cell cycle arrest and apoptosis, which may be the mechanism of its anti-proliferation effect. Next, we found that rosiglitazone suppresses the expression of TGF-beta and its receptor TGF-betaR2, and suppresses phosphorylation of Smad3. Rosiglitazone also inhibits formation of the Smad3/Smad4 complex. Furthermore, Rosiglitazone affects the expression of Smad3/Smad4 associated regulators of gene expression, including p21 and c-Myc. These results suggest that rosiglitazone suppresses growth and cell cycle of human glioma cells by blocking the TGF-beta mediated pathway.  相似文献   

10.
11.
12.
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.  相似文献   

13.
14.
Several lines of experiments demonstrated the interplay between the transforming growth factor-beta (TGF-beta) and vitamin D signaling pathways. Recently, we found that Smad3, a downstream component of the TGF-beta signaling pathway, potentiates ligand-induced transactivation of vitamin D receptor (VDR) as a coactivator of VDR (Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science 283, 1317-1321). Here, we investigated the roles of inhibitory Smads, Smad6 and Smad7, which are negative regulators of the TGF-beta/bone morphogenetic protein signaling pathway, on the Smad3-mediated potentiation of VDR function. We found that Smad7, but not Smad6, abrogates the Smad3-mediated VDR potentiation. Interaction studies in vivo and in vitro showed that Smad7 inhibited the formation of the VDR-Smad3 complex, whereas Smad6 had no effect. Taken together, our results strongly suggest that the interplay between the TGF-beta and vitamin D signaling pathways is, at least in part, mediated by the two classes of Smad proteins, which modulate VDR transactivation function both positively and negatively.  相似文献   

15.
16.
17.
18.
19.
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that plays a critical role in tissue repair and fibrosis. Sphingolipid signaling has been shown to regulate a variety of cellular processes and has been implicated in collagen gene regulation. The present study was undertaken to determine whether endogenous sphingolipids are involved in the TGF-beta signaling pathway. TGF-beta treatment induced endogenous ceramide levels in a time-dependent manner within 5-15 min of cell stimulation. Using human fibroblasts transfected with a alpha2(I) collagen promoter/reporter gene construct (COL1A2), C(6)-ceramide (10 microm) exerted a stimulatory effect on basal and TGF-beta-induced activity of this promoter. Next, to define the effects of endogenous sphingolipids on TGF-beta signaling we employed ectopic expression of enzymes involved in sphingolipid metabolism. Sphingosine 1-phosphate phosphatase (YSR2) stimulated basal COL1A2 promoter activity and cooperated with TGF-beta in activation of this promoter. Furthermore, overexpression of YSR2 resulted in the pronounced increase of COL1A1 and COL1A2 mRNA levels. Conversely, overexpression of sphingosine kinase (SPHK1) inhibited basal and TGF-beta-stimulated COL1A2 promoter activity. These results suggest that endogenous ceramide, but not sphingosine or sphingosine 1-phosphate, is a positive regulator of collagen gene expression. Mechanistically, we demonstrate that Smad3 is a target of YSR2. TGF-beta-induced Smad3 phosphorylation was elevated in the presence of YSR2. Cotransfection of YSR2 with wild-type Smad3, but not with the phosphorylation-deficient mutant of Smad3 (Smad3A), resulted in a dramatic increase of COL1A2 promoter activity. In conclusion, this study demonstrates a direct role for the endogenous sphingolipid mediators in regulating the TGF-beta signaling pathway.  相似文献   

20.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号