首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

2.
The lipophilic radical initiator (MeO-AMVN) and the fluorescent probe C11BODIPY581/591 (BODIPY) were used to measure the lipid compartment oxidizability of human plasma. Aqueous plasma oxidizability was initiated by the aqueous peroxyl radical generator, AAPH, and 2',7'-dichlorodihydrofluorescein (DCFH) was employed as the marker of the oxidative reaction. The distribution in aqueous and lipid compartments of the two radical initiators was determined by measuring the rate of consumption of the plasma hydrophilic and lipophilic endogenous antioxidants. In the presence of AAPH (20 mM), the order of consumption was: ascorbic acid > alpha-tocopherol > uric acid > beta-carotene, indicating a gradient of peroxyl radicals from the aqueous to the lipid phase. When MeO-AMVN was used (2mM), beta-carotene was consumed earlier than uric acid and almost at the same time as alpha-tocopherol, reflecting the diffusion and activation of MeO-AMVN in the lipophilic phase. The rate of BODIPY oxidation (increase in green fluorescence) significantly increased after the depletion of endogenous alpha-tocopherol and beta-carotene, whereas it was delayed for 180 min when AAPH was used instead of MeO-AMVN. The measurement of lipid oxidation in plasma was validated by adding to plasma the two lipophilic antioxidants, alpha-tocopherol and beta-carotene, whose inhibitory effects on BODIPY oxidation were dependent on the duration of the preincubation period and hence to their lipid diffusion. DCFH oxidation induced by AAPH only began after uric acid, the main hydrophilic plasma antioxidant, was consumed. In contrast, when MeO-AMVN was used, DCFH oxidation was delayed for 120 min, indicating its localization in the aqueous domain. In summary, the selective fluorescence method reported here is capable of distinguishing the lipophilic and hydrophilic components of the total antioxidant capacity of plasma.  相似文献   

3.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 μM) and lazaroid (IC50 = 5.0 μM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 × 103 μM) and trolox (IC5 = 1.2 × 103 μM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2′-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2′azobis (2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

4.
With increasing evidence showing the involvement of oxidative stress induced by free radicals in the development of various diseases, the role of radical-scavenging antioxidants has received much attention. Although many randomized controlled clinical trials do not support the beneficial effects of indiscriminate supplementation of antioxidants, more recent studies suggest that antioxidants such as vitamin E may be effective for prevention and treatment of some diseases when given to the right subjects at the right time. Many studies on the antioxidant capacity assessed by various available methods showed inconsistent results and the assessment of antioxidant capacity has been the subject of extensive studies and arguments. This study was performed to elucidate the basic chemistry required for the development of a reliable method for the assessment of antioxidant capacity for radical scavenging in vitro. In this study, the capacity of α-tocopherol and its related compounds, ascorbic acid, and uric acid for scavenging radicals was assessed from their effects on the rate of decay of hydrophilic and lipophilic probes with various reactivities toward free radicals induced by hydrophilic and lipophilic radicals in homogeneous solution and heterogeneous micelle systems. Fluorescein, pyranine, and pyrogallol red were used as hydrophilic probes, and BODIPY and N,N-diphenyl-p-phenylenediamine were used as lipophilic probes. We show that the rate and amount of radical scavenging by antioxidants, termed the antioxidant radical absorbance capacity, could be assessed by an appropriate combination of radical initiator and probe. This method was applied to the assessment of radical-scavenging capacity of human plasma, wine, and green tea powder.  相似文献   

5.
The authors have developed a kinetic method that allows one to obtain relative reactivity constants for lipophilic antioxidants in free radical systems. Two experimental model systems were developed: (a) a methanolic solution using AMVN as the free radical initiator and linoleic acid as the substrate, and (b) a multilamellar vesicle system composed of dilinoleoylphosphatidylcholine and AAPH as the substrate and the initiator, respectively. The use of these two systems allows researchers not only to determine the intrinsic reactivity of a potential antioxidant, but also to evaluate its potency in a membranous system where the contribution of the physical properties of the antioxidant to the inhibition of lipid peroxidation is important. These results show that all antioxidants tested acted in these systems as free radical scavengers, and they validate the synergism between intrinsic scavenging ability and membrane affinity and/or membrane-modifying physical properties in the inhibition of lipid peroxidation.  相似文献   

6.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   

7.
Red wine and its components have been shown to possess cardioprotective and anti-atherogenic effects. Additionally, red wine and many of its components like catechin, epicatechin, rutin, transresveratrol and quercetin possess antioxidant properties. Oxidized low density lipoprotein (LDL) is involved in the development of an atherosclerotic lesion. Red wine, therefore, may be anti-atherogenic because of its antioxidant effects on LDL modification. This study examined the antioxidant effects of catechin, epicatechin, rutin, transresveratrol, quercetin and Merlot wines on LDL oxidation. Merlot was chosen because although other red wines have been tested, limited information exists for this variety. Oxidation was carried out with AAPH (2,2-Azo-bis(2-amidinopropane) dihydrochloride) and AMVN (2,2-Azo-bis(2,4-dimethylvaleronitrile)), as water and lipid soluble peroxyl radical generating systems (FRGS), respectively. This allowed us to determine the lipophilic antioxidant characteristics of the wine and its components. Conjugated diene assays were used to measure LDL oxidation over 6 hrs. In an AAPH system, all polyphenolic compounds except transresveratrol displayed an antioxidant effect. LDL oxidation by AAPH was also inhibited by aliquots of Merlot wine. No antioxidant effects were observed in an AMVN environment except for a mild antioxidant effect by quercetin. Surprisingly, incubation of LDL with Merlot wine strongly protected against oxidation by AMVN. In summary, the five phenolic compounds displayed antioxidant effects in a water soluble free radical generating system, but only quercetin showed this in a lipid soluble one. However, red wine inhibited LDL oxidation by both water and lipid soluble free radical generating systems. Our data suggest, therefore, that red wines contain unidentified antioxidants that provide protection against LDL oxidation within a lipid soluble environment. (Mol Cell Biochem 263: 211–215, 2004)  相似文献   

8.
Free radicals were generated at known rates in the aqueous phase (by means of 2,2'-azobis (2-amidinopropane) dihydrochloride [AAPH]) and in a membranous (lipid) phase (by means of 2,2'-azobis (2,4-dimethylvaleronitrile [AMVN]). A soluble protein (bovine serum albumin: BSA), and membranes of lysed mitochondria containing radioactively labeled monoamine oxidase (MAO), were exposed to the resultant radical fluxes. Antioxidants were added to the system, either in the aqueous phase (Trolox) or in a liposomal membrane phase (alpha-tocopherol). Protein damage was assessed as tryptophan oxidation and conformational changes in tryptophan fluorescence of the soluble protein, BSA, and as fragmentation of both BSA and monoamine oxidase. Radicals generated in the aqueous phase, by AAPH, were effective in damaging BSA and MAO. Radicals generated within the liposome membrane phase (by AMVN) were less effective against BSA than those deriving from AAPH. Liposomal AMVN radicals could damage MAO, present in a separate membranous phase, though again, less effectively than could AAPH-derived radicals. BSA could be protected by Trolox, the aqueous soluble antioxidant, but hardly by tocopherol itself. Damage to MAO was limited by Trolox, and also by the hydrophobic antioxidant, tocopherol. Damaging reactions due to radicals generated in a membrane phase were significantly accelerated when the membrane was peroxidizable (soybean phosphatidylcholine) rather than nonperoxidizable (saturated dimyristoyl phosphatidylcholine). Thus lipid radicals also played some role in protein damage in these systems. BSA was attacked similarly in the presence or absence of liposomes by AAPH. Correspondingly, BSA could inhibit the peroxidation of liposomes induced by AAPH and less efficiently that induced by AMVN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
When human plasma was exposed to the hydrophilic radical initiator, AAPH, (-)-epigallocatechin-(3)-gallate (EGCG) dose-dependently inhibited the aqueous compartment oxidation (IC(50)=0.72 microM) (monitored by DCFH oxidation) and spared the lipophilic antioxidants, alpha-tocopherol, and carotenoids, but not ascorbic acid. When radicals were selectively induced in the lipid compartment by the lipophilic radical initiator, MeO-AMVN, EGCG spared alpha-tocopherol, but not carotenoids and inhibited the lipid compartment oxidation (monitored by BODIPY 581/591) with a potency lower than that found in the aqueous compartment (IC(50)=4.37 microM). Our results indicate that EGCG, mainly localized in the aqueous compartment, effectively quenches aqueous radical species, thus limiting their diffusion into the lipid compartment and preventing lipid-soluble antioxidant depletion. Further, ESR experiments confirmed that EGCG recycled alpha-tocopherol through a H-transfer mechanism at the aqueous/lipid interface affording an additional protective mechanism to the lipid compartment of plasma.  相似文献   

10.
Oxidative stress is recognized to be associated with the development of insulin resistance. Although free radicals are generated in various ways in vivo, very few radical generators have been used to investigate the effect of oxidative stress on cellular insulin signaling. In order to compare the effect of radical generators with different sites and durations of radical formation on liver insulin action, primary cultured rat hepatocytes were incubated with radical generators and insulin-dependent regulation of gene expression was examined. The hydrophobic 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) radical and H2O2 increased plasma membrane damage, and the hydrophilic 2-2'-azobis(2-amidinopropane) dihydrochloride (AAPH) radical and buthionine sulfoxyimine (BSO) increased oxidation of intracellular substances. Paraquat (PQ) and H2O2 inhibited insulin-dependent repression of insulin-like growth factor-binding protein-1 (IGFBP-1) and phosphoenolpyruvate carboxykinase (PEPCK) gene expression. These results indicate that PQ and H2O2 impair insulin action effectively and are suitable for examining crosstalk between oxidative stress and insulin signaling in liver-cell culture systems.  相似文献   

11.
Abstract

Objectives

Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity.

Methods

Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2′-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol.

Results

Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment.

Conclusions

α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.  相似文献   

12.
Natural estrogens have much greater radical-scavenging antioxidant activity than has previously been demonstrated, with activities up to 2.5 times those of vitamin C and vitamin E. The biological significance of this finding remains to be elucidated. In this work the antioxidant activity of a range of estrogens (phenolic, catecholic and stilbene-derived) has been studied. The activity of these substances as hydrogen-donating scavengers of free radicals in an aqueous solution has been determined by monitoring their relative abilities to quench the chromogenic radical cation 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS*+). The results show that the order of reactivity in scavenging this radical in the aqueous phase is dependent on the precise estrogenic structure, with phenolic estrogens being more potent antioxidants than catecholestrogens or diethylstilbestrol. The ability of the same estrogens to scavenge lipid phase radicals has also been assessed, determined by the ex vivo enhancement of the resistance of low-density lipoprotein (LDL) to oxidation; the order of efficacy is different from that in the aqueous phase, with the phenolic estrogens estriol, estrone and 17beta-estradiol being less potent than 2-hydroxyestradiol, 4-hydroxyestradiol, or diethylstilbestrol. In this lipid-based system, phenolic estrogens were found to be unable to regenerate alpha-tocopherol from LDL subjected to oxidative stress, while at the same time 2- and 4-hydroxyestradiol significantly delayed alpha-tocopherol loss. These results indicate that the various estrogens are good scavengers of free radicals generated in both the aqueous and the lipophilic phases. The antioxidant activity of an estrogen depends not only on the hydrophilic or lipophilic nature of the scavenged radical, but also on the phenol and catechol structures of the estrogen compound.  相似文献   

13.
We examined by using 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) as a radical generator the ability of estrogens to scavenge carbon-centered and peroxyl radicals. Electron spin resonance signals of carbon-centered radicals from AAPH were diminished by catecholestrogens but not by phenolic estrogens, showing that catecholestrogens efficiently scavenged carbon-centered radicals. However, fluorescent decomposition of R-phycoerythrin by AAPH-derived peroxyl radicals was inhibited by catecholestrogens and phenolic estrogens. Evidently, peroxyl radicals were scavenged by catecholestrogens and by phenolic estrogens. However, the scavenging ability of 4-hydroxyestradiol was less than 2-hydroxyestradiol. Strand break of DNA induced by AAPH was inhibited by catecholestrogens, but not by phenolic estrogens under aerobic and anaerobic conditions. Inactivation of lysozyme induced by AAPH was completely blocked by 2-hydroxyestradiol under aerobic and anaerobic conditions, and by 4-hyroxyestradiol only under anaerobic conditions. Peroxidation of arachidonic acid by AAPH was strongly inhibited by catecholestrogens at low concentrations. Only large amounts of phenolic estrogens markedly inhibited lipid peroxidation. These results show that catecholestrogens were antioxidant against AAPH-induced damage to biological molecules through scavenging both carbon-centered and peroxyl radicals, but phenolic estrogens partially inhibited AAPH-induced damage because they scavenged only peroxyl radicals.  相似文献   

14.
茶多糖是一种从茶叶中提取的酸性糖蛋白, 具有良好的抗氧化活性。以自由基清除率为指标, 分析皖西南地区夏秋茶多糖的抗氧化活性, 基于H2O2和EDTA-Fe2+建立的外源性羟基自由基(·OH)损伤细胞模型和PMA诱导内源性羟基自由基损伤模型, 进一步探讨茶多糖对自由基损伤的修复作用机制。结果表明, 茶多糖具有良好的体外抗氧化活性, 对DPPH·和·OH均具有较强的清除效果, EC50值分别为209.5和535.2 µg∙mL-1, 最大清除效率与Vc相当。细胞增殖实验表明, 外源性和内源性自由基氧化损伤模型中细胞存活率均随着茶多糖浓度的增加而升高, 在茶多糖浓度为800 µg∙mL-1时细胞存活率分别高达87.41%和85.84%, 且显著高于模型组(47.67%和48.03%)。在修复机制上, 利用激光共聚焦显微镜显影细胞内活性氧(ROS)分布以及荧光强度, 分析结果显示, 与模型组相比, 茶多糖对于细胞模型中外源和内源性ROS均具有明显的清除效果, 与体外抗氧化实验结果一致。茶多糖在体外表现出良好的自由基清除效率, 可在细胞水平上改善自由基损伤。该研究在细胞水平上揭示了茶多糖清除自由基的抗氧化损伤机制, 为后续进一步阐明茶多糖抗衰老作用奠定了基础。  相似文献   

15.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

16.
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.  相似文献   

17.
Ferulic acid ethyl ester (FAEE) is an ester derivative of ferulic acid, the latter known for its anti-inflammatory and antioxidant properties. Previous studies from our laboratory have shown that ferulic acid protects synaptosomal membrane system and neuronal cell culture systems against hydroxyl and peroxyl radical oxidation. FAEE is lipophilic and is able to penetrate lipid bilayer. Previous studies reported that FAEE reduces Alzheimer's amyloid beta peptide Abeta(1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture by direct radical scavenging and by inducing certain antioxidant proteins. In the present study we tested the hypothesis that FAEE would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes were isolated from the gerbils that were previously injected intraperitoneally (i.p.) with FAEE or DMSO and were treated with oxidants, Fe(2+)/H(2)O(2) or 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH). Synaptosomes isolated from the gerbil previously injected i.p. with FAEE and treated with Fe(2+)/H(2)O(2) and AAPH showed significant reduction in reactive oxygen species (ROS), levels of protein carbonyl, protein bound 4-hydroxynonenal (HNE, a lipid peroxidation product), and 3-nitrotyrosine (3-NT, another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to Fe(2+)/H(2)O(2) or AAPH induced oxidative stress in synapotosomes isolated from the brain of gerbils that were previously injected with DMSO. The synaptosomes isolated from gerbil pre-injected with FAEE and subsequently treated with AAPH or Fe(2+)/H(2)O(2) showed induction of heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) but reduced inducible nitric oxide synthase (iNOS) levels. These results are discussed with reference to potential use of this lipophilic antioxidant phenolic compound in the treatment of oxidative stress-related neurodegenerative disorders.  相似文献   

18.
Extracorporeal circulation (ECC), a necessary and integral part of cardiac surgery, can itself induce deleterious effects in patients. The pathogenesis of diffuse damage of several tissues is multifactorial. It is believed that circulation of blood extracorporeally through plastic tubes causes a whole body inflammatory response and a severe shear stress to blood cells. The aim of this study was to evaluate the level of oxidative stress and its deleterious effect on red blood cell (RBC) before (pre-ECC), immediately after (per-ECC) and 24 h after an ECC (24 h post-ECC). Several indicators of extracellular oxidative status were evaluated. The ascorbyl free radical (AFR) was directly measured in plasma using electron spin resonance (ESR) spectroscopy and expressed with respect to vitamin C levels in order to obtain a direct index of oxidative stress. Allophycocyanin assay was also used to investigate the plasma antioxidant status (PAS). Indirect parameters of antioxidant capacities of plasma such as vitamin E, thiol and uric acid levels were also quantified. RBC alterations were evaluated through potassium efflux and carbonyl levels after action of AAPH, a compound generating carbon centered free radicals. No changes in plasma uric acid and thiols levels were observed after ECC. However, vitamin E levels and PAS were decreased in per-ECC and 24 h post-ECC samples. Vitamin C levels were significantly lower in 24 h post-ECC and the AFR/ vitamin C ratio was increased. Differences in results had been noted when measurements took account of hemodilution. Increases of uric acid and thiols levels were observed after ECC. Vitamin E levels were not modified. However after hemodilution correction a significant decrease of vitamin C level was noted in 24 h post-ECC samples as compared to per-ECC sample. Whatever the way of measurement, vitamin C levels decreased suggesting the occurrence of ECC induced-oxidative stress. Concerning RBC, in the absence of AAPH, extracellular potassium remained unchanged between pre-, per- and 24 h post-ECC. AAPH induced a significant increase in extracellular potassium and carbonyls levels of RBC membranes, which was not modified by ECC. These results suggest the absence of alterations of RBC membrane during ECC despite the occurrence of disturbances in PAS. Such protection is of particular importance in a cell engaged in the transport of oxygen and suggests that RBC are equipped with mechanisms affording a protection against free radicals.  相似文献   

19.
This study deals with the activity of various vitamins against the radical-mediated oxidative damage in human whole blood. We have used a biological method that allows both the evaluation of plasma and that of red blood cell resistance against the free radicals induced by 2,2′-azobis (2-amidinopropane) hydrochloride (AAPH). Spin trapping measures using mainly 5-(diethoxyphosphoryl)-5-methyl-1-pyrolline N-oxide nitrone (DEPMPO) were carried out under several conditions to identify the free radicals implicated in this test. Only the oxygenated-centred radical generated from AAPH was found highly reactive to initiate red blood cell lysis. With DEPMPO only alkoxyl radicals were observed and no evidence was found for alkylperoxyl radicals. The antioxidant activity of several lipid- and water-soluble vitamins has been assessed by the biological assay and through two chemical methods. We have noticed high antioxidant activities for tocopherols (in the order δ>γ>α) in the biological test but not through chemical methods. At 1 μM, the δ-tocopherol efficiency in inhibiting radical-induced red blood cell hemolysis was three times as high as the α-tocopherol efficiency. For β-carotene no significant activity even in whole blood was shown. Highly surprising antioxidant activities were observed for acid folic and pyridoxine, compared to ascorbic acid. At 10 μM, the effectiveness of folic acid was almost three times as high as vitamin C. The biological test seems clinically more relevant than most other common assays because it can detect several classes of antioxidants.  相似文献   

20.
In mammals, aging is linked to a decline in the activity of citrate synthase (CS; E.C. 2.3.3.1), the first enzyme of the citric acid cycle. We used 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), a water-soluble generator of peroxyl and alkoxyl radicals, to investigate the susceptibility of CS to oxidative damage. Treatment of isolated mitochondria with AAPH for 8–24?h led to CS inactivation; however, the activity of aconitase, a mitochondrial enzyme routinely used as an oxidative stress marker, was unaffected. In addition to enzyme inactivation, AAPH treatment of purified CS resulted in dityrosine formation, increased protein surface hydrophobicity, and loss of tryptophan fluorescence. Propyl gallate, 1,8-naphthalenediol, 2,3-naphthalenediol, ascorbic acid, glutathione, and oxaloacetate protected CS from AAPH-mediated inactivation, with IC50 values of 9, 14, 34, 37, 150, and 160?μM, respectively. Surprisingly, the antioxidant epigallocatechin gallate offered no protection against AAPH, but instead caused CS inactivation. Our results suggest that the current practice of using the enzymatic activity of CS as an index of mitochondrial abundance and the use of aconitase activity as an oxidative stress marker may be inappropriate, especially in oxidative stress-related studies, during which alkyl peroxyl and alkoxyl radicals can be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号