首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The p53 tumor suppressor protein induces transient growth arrest or apoptosis in response to genotoxic stress and mediates the irreversible growth arrest of cellular senescence. We present evidence here that p53 also contributes to the reversible, growth factor-dependent arrest of quiescence (G(0)). Microinjection of expression vectors encoding either MDM2 or a pRb-binding mutant of SV40 T antigen, both of which abrogate p53 function, stimulated quiescent normal human fibroblasts to initiate DNA synthesis and were 40-70% as effective as wild-type T antigen. Electrophoretic mobility shift and p53 transactivation assays showed that p53 activity was higher in quiescent and senescent cells compared with proliferating cells. As proliferating cells entered G(0) after growth factor withdrawal, the p53 mRNA level increased, followed by transient accumulation of the protein. Shortly thereafter, the expression (mRNA and protein) of p21, a p53 target gene and effector of cell cycle arrest, increased. Finally, stable expression of the HPV16 E6 oncogene or dominant negative p53 peptide, GSE-22, both of which inhibit p53 function, delayed entry into quiescence following growth factor withdrawal. Our data indicate that p53 is activated during both quiescence and senescence. They further suggest that p53 activity contributes, albeit not exclusively, to the quiescent growth arrest.  相似文献   

2.
Cell senescence and hypermitogenic arrest   总被引:2,自引:0,他引:2       下载免费PDF全文
A diverse range of conditions, from mitogenic stimuli to cytotoxic stress, can induce cell senescence. Here, I propose that simultaneous stimulation of mitogen-activated pathways and downstream inhibition of cyclin-dependent kinases leads, ultimately, to cell senescence. This model distinguishes between two types of growth arrest: first, exit to G0 phase, which is caused by the withdrawal of mitogens and can lead to apoptosis; and second, hypermitogenic arrest, which is stimulated by mitogens and can lead to senescence. The concept of hypermitogenic arrest defines cell senescence as a functionally active, stable and conditionally reversible state.  相似文献   

3.
Senescence and quiescence are frequently used as interchangeable terms in the literature unwittingly. Despite the fact that common molecules play role in decision of cell cycle arrest, senescent and quiescent cells have some distinctive phenotypes at both molecular and morphological levels. Thus, in this review we summarized the features of senescence and quiescence with respect to visual characteristics and prominent key molecules. A PubMed research was conducted for the key words; “senescence”, “quiescence” and “cell cycle arrest”. The results which are related to cell cycle control were selected. The selection criteria of the target articles used for this review included also key cell cycle molecules such as p53, pRB, p21, p16, mTOR, p27, etc. The results were not evaluated statistically. The mechanistic target of rapamycin (mTOR) has been claimed to be key molecule in switching on/off senescence/quiescence. Specifically, although maximal p53 activation blocks mTOR and causes quiescence, partial p53 activation sustains mTOR activity and causes senescence subsequently. In broader perspective, quiescence occurs due to lack of nutrition and growth factors whereas senescence takes place due to aging and serious DNA damages. Contrary to quiescence, senescence is a degenerative process ensuing a certain cell death. We highlighted several differences between senescence and quiescence and their key molecules in this review. Whereas quiescence (cell cycle arrest) is only one half of the senescence, the other half is growth stimulation which causes actual senescence phenotype.  相似文献   

4.
5.
We recently reported that paracrine Fibroblast Growth Factor 2 (FGF2) triggers senescence in Ras-driven Y1 and 3T3Ras mouse malignant cell lines. Here, we show that although FGF2 activates mitogenic pathways in these Ras-dependent malignant cells, it can block cell proliferation and cause a G2/M arrest. These cytostatic effects of FGF2 are inhibited by PD173074, an FGF receptor (FGFR) inhibitor. To determine which downstream pathways are induced by FGF2, we tested specific inhibitors targeting mitogen-activated protein kinase (MEK), phosphatidylinositol 3 kinase (PI3K) and protein kinase C (PKC). We show that these classical mitogenic pathways do not mediate the cytostatic activity of FGF2. On the other hand, the inhibition of Src family kinases rescued Ras-dependent malignant cells from the G2/M irreversible arrest induced by FGF2. Taken together, these data indicate a growth factor-sensitive point in G2/M that likely involves FGFR/Ras/Src pathway activation in a MEK, PI3K and PKC independent manner.  相似文献   

6.
BACKGROUND: The decision for a cell to enter the DNA synthesis (S) phase of the cell cycle or to arrest in quiescence is likely to be determined by genes expressed in the late G1 phase, at the restriction point. Loss of restriction point control is associated with malignant cellular transformation and cancer. For this reason, identifying genes that are differentially expressed in late G1 phase versus quiescence is important for understanding the molecular basis of normal and malignant growth. MATERIALS AND METHODS: The differential display (DD) method detects mRNA species that are different between sets of mammalian cells, allowing their recovery and cloning of the corresponding cDNAs. Using this technique, we compared mRNAs from synchronized human breast cancer cells (21 PT) in quiescence and in late G1. RESULTS: Six mRNAs differentially expressed in late G1 or in quiescence were identified. One mRNA expressed 10 hr after serum induction showed 99% homology to a peptide transporter involved in antigen presentation of the class I major histocompatibility complex (TAP-1) mRNA. Another mRNA expressed specifically in quiescence and down-regulated 2 hr following serum induction showed 98% homology to human NADP+ -dependent cytoplasmic malic enzyme (EC1.1.1.40) mRNA, which is an important enzyme in fatty acid synthesis and lipogenesis. Three others showed high homology to different mRNAs in the GeneBank, corresponding to genes having unknown functions. Finally, one mRNA revealed no significant homology to known genes in the GeneBank. CONCLUSIONS: We conclude that DD is an efficient and powerful method for the identification of growth-related genes which may have a role in cancer development.  相似文献   

7.
8.
Cells arrest in the G1 or G0 phase of the cell cycle in response to a variety of negative growth signals that induce arrest by different molecular pathways. The ability of human papillomavirus (HPV) oncogenes to bypass these signals and allow cells to progress into the S phase probably contributes to the neoplastic potential of the virus. The E7 protein of HPV-16 was able to disrupt the response of epithelial cells to three different negative growth arrest signals: quiescence imposed upon suprabasal epithelial cells, G1 arrest induced by DNA damage, and inhibition of DNA synthesis caused by treatment with transforming growth factor beta. The same set of mutated E7 proteins was able to abrogate all three growth arrest signals. Mutant proteins that failed to abrogate growth arrest signals were transformation deficient and included E7 proteins that bound retinoblastoma protein in vitro. In contrast, HPV-16 E6 was able to bypass only DNA damage-induced G1 arrest, not suprabasal quiescence or transforming growth factor beta-induced arrest. The E6 and E7 proteins from the low-risk virus HPV-6 were not able to bypass any of the growth arrest signals.  相似文献   

9.
Cell cycle arrest coupled with hyper-active mTOR leads to cellular senescence. While arresting cell cycle, high levels of p53 can inhibit mTOR (in some cell lines), thus causing reversible quiescence instead of senescence. Nutlin-3a-induced p53 inhibited mTOR and thus caused quiescence in WI-38 cells. In contrast, while arresting cell cycle, the DNA-damaging drug doxorubicin (DOX) did not inhibit mTOR and caused senescence. Super-induction of p53 by either nutlin-3a or high concentrations of DOX (high-DOX) prevented low-DOX-induced senescence, converting it into quiescence. This explains why in order to cause senescence, DNA damaging drugs must be used at low concentrations, which arrest cell cycle but do not induce p53 at levels sufficient to suppress mTOR. Noteworthy, very prolonged treatment with nutlin-3a also caused senescence preventable by rapamycin. In RPE cells, low concentrations of nutlin-3a caused a semi-senescent morphology. Higher concentrations of nutlin-3a inhibited mTOR and caused quiescent morphology. We conclude that low p53 levels during prolonged cell cycle arrest tend to cause senescence, whereas high levels of p53 tend to cause either quiescence or cell death.  相似文献   

10.
To improve our understanding of the cutaneous vitamin D system, we studied vitamin D receptor (VDR) gene regulation in cultured human keratinocytes. Because VDR and its ligand 1 alpha,25-dihydroxyvitamin D(3) have been implicated in epidermal growth control, we investigated VDR expression as related to cellular proliferation by using different cell cycle synchronization protocols. Keratinocytes, deprived of growth factors, were forced into quiescence and a concomitant loss of VDR expression was observed. Mitogenic stimulation of these G(0) cells however quickly upregulated VDR levels several hours ahead the G(1)-S transition point. Growth arrest at the G(1)-S border by mimosine treatment or at the metaphase by nocodazole also downregulated VDR levels but a restoration of VDR expression was again quickly achieved after reentering the cell cycle. These findings indicate that VDR expression in keratinocytes is restricted to actively cycling cells, but not limited to one particular phase of the cell cycle.  相似文献   

11.
We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited TOR and prevented the expression of some senescent markers, despite high levels of p21 and cell cycle arrest. In the presence of serum, p21-arrested cells irreversibly lost proliferative potential. In contrast, when cells were arrested by p21 in the absence of serum, they retained the capacity to resume proliferation upon termination of p21 induction. In normal human cells such as WI38 fibroblasts and retinal pigment epithelial (RPE) cells, serum starvation caused quiescence, which was associated with low levels of cyclin D1, inactive TOR and slim-cell morphology. In contrast, cellular senescence with high levels of TOR activity was induced by doxorubicin (DOX), a DNA damaging agent, in the presence of serum. Inhibition of TOR partially prevented senescent phenotype caused by DOX. Thus growth stimulation coupled with cell cycle arrest leads to senescence, whereas quiescence (a condition with inactive TOR) prevents senescence.  相似文献   

12.
Cellular senescence is a cell cycle arrest accompanied by high expression of cyclin dependent kinase inhibitors which counteract overactive growth signals, which serves as a tumor suppressive mechanism. Senescence can be a result of telomere shortening (natural or replicative senescence) or DNA damage resulting from exogenous stressors (induced senescence). Here, we performed gene expression profiling through RNA-seq of replicative senescence, adriamycin-induced senescence, H2O2-induced senescence, and 5-aza-2-deoxycytidine-induced senescence in order to profile the pathways controlling various types of senescence. Overall, the pathways common to all 4 types of senescence were related to inflammation and the innate immune system. It was also evident that 5-aza-induced senescence mirrors natural replicative senescence due to telomere shortening. We also examined the prevalence of senescence-associated secretory phenotype (SASP) factors in the RNA-seq data, showing that it is a common characteristic of all 4 types of senescence. In addition, we could discriminate changes in gene expression due to quiescence during cellular senescence from those that were specific to senescence.  相似文献   

13.
Cellular senescence is characterized by irreversible loss of proliferative potential and a large, flat cell morphology. Ectopic p21and doxorubicin induced cellular senescence in HT1080 and WI-38-tert cell lines. In the same cell lines, the Mdm2 inhibitor nutlin-3a induced p53 but, unexpectedly, caused quiescence (reversible arrest) with a small cell morphology. We discuss that Mdm antagonists could be used in combination with chemotherapy to reversibly arrest normal cells, thus protecting them during chemotherapy of cancer (cyclotherapy).  相似文献   

14.
The intracellular events which are involved in controlling the G1 to S phase transition during the eucaryotic cell cycle are important to define in order to understand the mechanisms by which mitogenic and growth arrest-inducing agents control cell growth. Because a change in protein kinase activity is associated with the initial response of cells to mitogenic stimulants and growth factors, we used a kinase renaturation assay to identify specific protein kinases which are modulated as human T cells make the G1 to S phase transition after mitogenic stimulation with lectin. We identified four protein serine/threonine kinases of 180, 97, 85, and 38 kilodaltons which are increased in activity as these cells enter S phase. A-55 kDa serine/threonine kinase (PK55) was shown to have maximal activity during G0 and its activity was reduced by 95% upon movement into S phase. PK55 is inducible in human T cells by removal of interleukin 2 and low serum incubation which arrests cells in G1 phase, indicating that it is closely associated with G1 phase growth arrest. Furthermore, a similar PK55 activity was induced upon growth arrest in HL-60 cells treated with dimethyl sulfoxide and in Daudi cells treated with interferon alpha. Because the cAMP-dependent protein kinase (PK-A) family has been shown to be antiproliferative to lectin stimulated T cells, we were interested in determining whether PK55 was in fact an isozyme of PK-A. Comparative analysis using a specific peptide inhibitor of PK-A activity revealed that PK55 is catalytically distinct from PK-A. This data suggest that increases in PK55 may be associated with the growth-arrested state and further that PK55 is distinct from PK-A.  相似文献   

15.
Peripheral blood T lymphocytes require two sequential mitogenic signals to reenter the cell cycle from their natural, quiescent state. One signal is provided by stimulation of the T-cell antigen receptor, and this induces the synthesis of both cyclins and cyclin-dependent kinases (CDKs) that are necessary for progression through G1. Antigen receptor stimulation alone, however, is insufficient to promote activation of G1 cyclin-Cdk2 complexes. This is because quiescent lymphocytes contain an inhibitor of Cdk2 that binds directly to this kinase and prevents its activation by cyclins. The second mitogenic signal, which can be provided by the cytokine interleukin 2, leads to inactivation of this inhibitor, thereby allowing Cdk2 activation and progression into S phase. Enrichment of the Cdk2 inhibitor from G1 lymphocytes by cyclin-CDK affinity chromatography indicates that it may be p27Kip1. These observations show how sequentially acting mitogenic signals can combine to promote activation of cell cycle proteins and thereby cause cell proliferation to start. CDK inhibitors have been shown previously to be induced by signals that negatively regulate cell proliferation. Our new observations show that similar proteins are down-regulated by positively acting signals, such as interleukin 2. This finding suggests that both positive and negative growth signals converge on common targets which are regulators of G1 cyclin-CDK complexes. Inactivation of G1 cyclin-CDK inhibitors by mitogenic growth factors may be one biochemical pathway underlying cell cycle commitment at the restriction point in G1.  相似文献   

16.
The cell cycle inhibitor p21CDKN1A induces cell cycle arrest under different conditions, including senescence and terminal differentiation. Still debated is its involvement in the reversible transition from proliferation to a non-dividing quiescent state (G0), in which a significant role has been attributed to cell cycle inhibitor p27CDKN1B. Here we provide evidence showing that high p21 protein levels are necessary to enter and maintain the quiescence state following contact inhibition and growth factor withdrawal. In fact, entry into quiescence was impaired, both in human fibroblasts in which p21 gene has been deleted, or protein expression knocked-down by RNA interference. Importantly, in the absence of p21, human fibroblasts activate a DNA damage-like signalling pathway, as shown by phosphorylation of histone H2AX and Chk1 proteins. In addition, we show that in the absence of p21, checkpoint is activated by an unscheduled entry into S phase, with a reduced efficiency in DNA maturation, in the presence of high c-myc protein levels. These results highlight the role of p21 in counteracting inappropriate proliferation stimuli for genome stability maintenance.  相似文献   

17.
Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol.  相似文献   

18.
Mouse 3T3 cells transformed by a conditional mutant of Rous sarcoma virus (LA90) can assume either a normal or a transformed phenotype, depending on the temperature of cultivation. These cells (LA90) were arrested at the G0/G1 phase of the cell cycle by starvation for serum growth factors at the nonpermissive temperature (39 degrees C). Release from the G0/G1 phase by serum growth factors resulted in a rapid stimulation of Rb+ influx. To investigate whether the stimulation of Rb+ influx is obligatory for cell proliferation, the cultures were released from the G0/G1 phase by a temperature decrease in the absence of serum. A temperature decrease from 39 to 32 degrees C activated the viral pp60src gene mitogenic activity. Under these conditions, no rapid stimulation of Rb+ influx was observed. These results suggest that the rapid stimulation of Rb+ influx induced by serum growth factors is not an essential signal for cell release from the G0/G1 phase. However, a delayed increase in Rb+ influx concomitant with an increase in the cell content of K+ was observed in the cultures released from the G0/G1 phase by temperature decrease in the absence of serum growth factors. We found that the LA90 cells incubated at the permissive temperature (32 degrees C) secreted a mitogenic activity into the medium. Moreover, the conditioned medium from cultures incubated at 32 degrees C, but not at 39 degrees C, stimulate Rb+ influx in G0/G1 cells. These results indicate that Rous sarcoma virus pp60src induces a slow autocrine secretion of a mitogenic activity. This mitogenic activity slowly modulates the K+ content. Therefore, the slow elevation in cellular content of K+ is proposed to be an obligatory event for proliferation in normal and transformed cells.  相似文献   

19.

Background

Depending on cellular context, p53-inducing agents (such as nutlin-3a) cause different outcomes including reversible quiescence and irreversible senescence. Inhibition of mTOR shifts the balance from senescence to quiescence. In cell lines with incomplete responses to p53, this shift may be difficult to document because of a high proportion of proliferating cells contaminating arrested (quiescent and senescent) cells. This problem also complicates the study of senescence caused by minimal levels of p21 that are capable to arrest a few cells.

Methodology

During induction of senescence by low levels of endogenous p53 and ectopic p21, cells were co-treated with nocodazole, which eliminated proliferating cells. As a result, only senescent and quiescent cells remained.

Results and Discussion

This approach revealed that rapamycin efficiently converted nutlin-induced-senescence into quiescence. In the presence of rapamycin, nutlin-arrested MCF-7 cells retained the proliferative potential and small/lean morphology. Using this approach, we also unmasked senescence in cells arrested by low levels of ectopic p21, capable to arrest only a small proportion of HT1080-p21-9 cells. When p21 did cause arrest, mTOR caused senescent phenotype. Rapamycin and high concentrations of nutlin-3a, which inhibit the mTOR pathway in these particular cells, suppressed senescence, ensuring quiescence instead. Thus, p21 causes senescence passively, just by causing arrest, while still active mTOR drives senescent phenotype.  相似文献   

20.
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号