首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
宁夏陆地生态系统水分利用效率特征及其影响因子   总被引:1,自引:0,他引:1  
宫菲  杜灵通  孟晨  丹杨  王乐  郑琪琪  马龙龙 《生态学报》2019,39(24):9068-9078
生态系统水分利用效率(Water Use Efficiency, WUE)是表征生态系统碳水耦合程度的重要指标,能反映生态系统碳水循环规律及其相互作用关系。基于MODIS数据以及宁夏生态系统类型数据,分析2000—2017年宁夏不同生态系统WUE的变化特征,探讨了NPP和ET两种因子对WUE年际与年内变化的影响。结果表明:(1)全区陆地生态系统的年均WUE为1.03 g·C/kg·H_2O,值域在0.55—2.98 g·C/kg·H_2O之间,总体上呈现南北高、中部低的特征。(2)不同生态系统的WUE差异较大,由高到低为水体及湿地、森林、农田、草地、聚落、荒漠和其他生态系统,在同类生态系统中,植被生物量和盖度越高的亚类生态系统,其WUE也越高。(3)宁夏陆地生态系统WUE存在着每年0.0141 g·C/kg·H_2O的下降趋势,年内WUE呈典型的单峰形态,变化范围在0.02—2.16 g·C/kg·H_2O之间。(4)年际尺度上,宁夏陆地生态系统WUE与年蒸散(Evapotranspiration,ET)有极显著负相关性(P0.01),而与净初级生产力(Net Primary Production,NPP)没有相关性;年内尺度上,WUE变化与ET呈显著正相关(P0.05),与NPP呈极显著正相关(P0.01),这与植被的年内季节性生长过程有关。(5)根据ET强弱和WUE高低,可将宁夏陆地生态系统水分利用效率特征划分为4类,即低ET低WUE区、低ET高WUE区、高ET低WUE区和高ET高WUE区。宁夏的生态恢复工程在增强植被生产力的同时,也增强了区域水分消耗,致使陆地生态系统整体水分利用效率下降,这为宁夏未来水资源调控和生态重建提供了科学依据。  相似文献   

2.
Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff. We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the three‐way interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two‐way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor's effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor's effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two‐way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.  相似文献   

3.
The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (REd) and daily gross ecosystem productivity (GEPd), were estimated over 2 years at a flux tower site in French Guiana, South America (5 °16′54″N, 52 °54′44″W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93‐day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m?2). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower REd combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m?2. Severe drought conditions resulted in even lower REd, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m?2), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  相似文献   

4.
Our current ability to detect and predict changes in forest ecosystem productivity is constrained by several limitations. These include a poor understanding of belowground productivity, the short duration of most analyses, and a need for greater examination of species- or community-specific variability in productivity studies. We quantified aboveground net primary productivity (ANPP) over 3 years (1999–2001), and both belowground NPP (BNPP) and total NPP over 2 years (2000–2001) in both mesic and xeric site community types of the mixed mesophytic forest of southeastern Kentucky to examine landscape variability in productivity and its relation with soil resource [water and nitrogen (N)] availability. Across sites, ANPP was significantly correlated with N availability (R2 = 0.58, P = 0.028) while BNPP was best predicted by soil moisture content (R2 = 0.72, P = 0.008). Because of these offsetting patterns, total NPP was unrelated to either soil resource. Interannual variability in growing season precipitation during the study resulted in a 50% decline in mesic site litter production, possibly due to a lag effect following a moderate drought year in 1999. As a result, ANPP in mesic sites declined 27% in 2000 compared to 1999, while xeric sites had no aboveground production differences related to precipitation variability. If global climate change produces more frequent occurrences of drought, then the response of mesic sites to prolonged moisture deficiency and the consequences of shifting carbon (C) allocation on C storage will become important questions.  相似文献   

5.
分析全球不同气候带陆地植被净初级生产力(NPP)的变化趋势与可持续性,对于估算全球陆地生态系统的结构、功能和碳源(汇)具有重要意义。运用Mann-Kendall突变检验、Theil-Sen斜率估计、Hurst指数分析全球不同气候带陆地NPP的变化趋势与可持续性。结果表明:(1)全球陆地NPP有明显的地域分异规律,呈现低纬高、高纬低,沿海高、内陆低的特点。约48.79%陆地生态系统的植被NPP得到了改善,其中显著改善的面积占全球陆地生态系统的8.45%,主要分布在北美洲北部和中部、亚马逊河流域西部、刚果盆地、欧洲南部、印度半岛西北部、中国黄土高原;轻微改善的面积占全球陆地生态系统的40.34%,主要分布在南美洲中南部、亚洲东部和澳大利亚大陆东部。(2)各气候带NPP变化趋势和突变点表现为:热带、亚热带、极地带的NPP呈不显著下降趋势(R2=0.111,P=0.176;R2=0.144,P=0.120;R2=0.002,P=0.854),热带无明显突变点,亚热带突变点为2015年,极地带突变点为2005年;干旱气候带的NPP...  相似文献   

6.
Recent studies have shown an increasing trend in hydroclimatic disturbances like droughts, which are anticipated to become more frequent and intense under global warming and climate change. Droughts adversely affect the vegetation growth and crop yield, which enhances the risks to food security for a country like India with over 1.2 billion people to feed. Here, we compared the response of terrestrial net primary productivity (NPP) to hydroclimatic disturbances in India at different scales (i.e., at river basins, land covers, and climate types) to examine the ecosystems’ resilience to such adverse conditions. The ecosystem water use efficiency (WUEe: NPP/Evapotranspiration) is an effective indicator of ecosystem productivity, linking carbon (C) and water cycles. We found a significant difference (p < .05) in WUEe across India at different scales. The ecosystem resilience analysis indicated that most of the river basins were not resilient enough to hydroclimatic disturbances. Drastic reduction in WUEe under dry conditions was observed for some basins, which highlighted the cross‐biome incapability to withstand such conditions. The ecosystem resilience at land cover and climate type scale did not completely relate to the basin‐scale ecosystem resilience, which indicated that ecosystem resilience at basin scale is controlled by some other ecohydrological processes. Our results facilitate the identification of the most sensitive regions in the country for ecosystem management and climate policy making, and highlight the need for taking sufficient adaptation measures to ensure sustainability of ecosystems.  相似文献   

7.
Climate change and anthropogenic activities have altered the terrestrial ecosystem dynamics around the globe. Due to the complex ecosystem-atmosphere interactions at different scales, these impacts are difficult to quantify and are poorly understood, especially in developing countries with limited ground-based observations. This study analyzed the impact of climatic changes and anthropogenic activities on ecosystem net primary productivity (NPP) in India using remote sensing-based observations, correlation analysis, and Residual Trend analysis (RESTREND). Using different climate variables such as precipitation, temperature, and solar radiation, along with Land Use and Land Cover (LULC) and NPP maps, we first classified the ecosystems (ES) into two categories: natural ecosystems – influenced only by climate change (ESc), covering about 19.7% of the area, and human-influenced ecosystems – influenced by both climate change and anthropogenic activities (ESc+a), covering about 80.3% of the area. RESTREND analysis was performed on both ESc and ESc+a to analyze the relative contributions of climate change and human activities to changes in NPP. The correlation analysis between NPP and climate variables suggested that precipitation was the dominant control of NPP in about 72% area, whereas temperature and solar radiation controlled NPP in Himalayan and forest-dominated regions, respectively. The human-influenced ecosystems (ESc+a) experienced an increasing trend in NPP, whereas natural ecosystems (ESc) experienced a decreasing trend, particularly in forest-dominated regions. Overall, NPP increased in the country during the study duration. The contributions of climatic changes and anthropogenic activities varied spatially and temporally. In general, climatic factors enhanced the NPP, whereas human activities contributed to a slight decline in NPP. These findings improve our understanding of how ecosystems in India are influenced by climate change and anthropogenic activities in recent decades. The results from this study will aid in identifying ecological hotspots and key drivers for better ecosystem management strategies.  相似文献   

8.
The interannual net primary production variation and trends of a Picea schrenkiana forest were investigated in the context of historical changes in climate and increased atmospheric CO2 concentration at four sites in the Tianshan Mountain range, China. Historical changes in climate and atmospheric CO2 concentration were used as Biome–BGC model drivers to evaluate the spatial patterns and temporal trends of net primary production (NPP). The temporal dynamics of NPP of P. schrenkiana forests were different in the western, middle and eastern sites of Tianshan, which showed substantial interannual variation. Climate changes would result in increased NPP at all study sites, but only the change in NPP in the western forest (3.186 gC m−2 year−1, P < 0.05) was statistically significant. Our study also showed a higher increase in the air temperature, precipitation and NPP during 1987–2000 than 1961–1986. Statistical analysis indicates that changes in NPP are positively correlated with annual precipitation (R = 0.77–0.92) but that NPP was less sensitive to changes in air temperature. According to the simulation, increases in atmospheric CO2 increased NPP by improving the water use efficiency. The results of this study show that the Tianshan Mount boreal forest ecosystem is sensitive to historical changes in climate and increasing atmospheric CO2. The relative impacts of these variations on NPP interact in complex ways and are spatially variable, depending on local conditions and climate gradients. W. Sang and H. Su contributed equally to this paper, arranged in alphabetical order by surnames.  相似文献   

9.
The alteration of fresh and marine water cycling is likely to occur in coastal ecosystems as climate change causes the global redistribution of precipitation while simultaneously driving sea‐level rise at a rate of 2–3 mm yr?1. Here, we examined how precipitation alters the ecological effects of ocean water intrusion to coastal dunes on two oceanic carbonate islands in the Bahamas. The approach was to compare sites that receive high and low annual rainfall and are also characterized by seasonal distribution (wet and dry season) of precipitation. The spatial and temporal variations in precipitation serve as a proxy for conditions of altered precipitation which may occur via climate change. We used the natural abundances of stable isotopes to identify water sources (e.g., precipitation, groundwater and ocean water) in the soil–plant continuum and modeled the depth of plant water uptake. Results indicated that decreased rainfall caused the shallow freshwater table on the dune ecosystem to sink and contract towards the inland, the lower freshwater head allowed ocean water to penetrate into the deeper soils, while shallow soils became exceedingly dry. Plants at the drier site that lived nearest to the ocean responded by taking up water from the deeper and consistently moist soil layers where ocean water intruded. Towards the inland, decreased rainfall caused the water table to sink to a depth that precluded both recharge to the upper soil layers and access by plants. Consequently, plants captured water in more shallow soils recharged by infrequent rainfall events. The results demonstrate dune ecosystems on oceanic islands are more susceptible to ocean water intrusion when annual precipitation decreases. Periods of diminished precipitation caused drought conditions, increased exposure to saline marine water and altered water‐harvesting strategies. Quantifying species tolerances to ocean water intrusion and drought are necessary to determine a threshold of community sustainability.  相似文献   

10.
Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water‐limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses – leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] – of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004–2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf‐level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16–30 cm) soil water. In the shallow‐rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition.  相似文献   

11.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

12.
In this study the seasonal variation in carbon, water and energy fluxes as well as in net primary productivity (NPP) of different tree components is presented for a 2‐year‐old poplar (Populus spp.) plantation. A thorough ecophysiological study was performed at ecosystem scale, at tree and at leaf level, in this high‐density bioenergy plantation. Seasonal variation in NPP and fluxes was analysed in relation to meteorological parameters at the field site. The growing season length in terms of carbon uptake was controlled by leaf area development until the maximum leaf area index (LAImax) was reached. Afterwards, a shift to belowground carbon allocation was observed. A dry period in spring caused a reduced leaf area production as well as a decrease in net ecosystem exchange and gross primary production (GPP) due to stomatal closure. Water use efficiency and fine root growth increased in response to limiting soil water availability in the root zone. When soil water availability was not limiting, GPP was controlled by a decrease in solar radiation and air temperature. The results of this study indicate that the productivity of recently established bioenergy plantations with fast‐growing trees is very sensitive to drought. The interaction between soil water availability and factors controlling ecosystem GPP is crucial in assessing the CO2 mitigation potential under future climate conditions.  相似文献   

13.
Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPPmax). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree–grass ecosystem, we established three landscape‐level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green‐up and dry‐down), slopes during green‐up and dry‐down period, and seasonal amplitude, were extracted from time series of GPPmax and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPPmax was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green‐up period. Yet, both fertilized sites senesced earlier during the dry‐down period (17–19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPPmax during the green‐up period and a sharper decline in GPPmax during the dry‐down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient–water interaction in such water‐limited ecosystems. With the projected warming‐drying trend, the positive effects of N fertilization induced by N deposition on GPPmax may be counteracted by an earlier and faster dry‐down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water‐limited ecosystems.  相似文献   

14.
Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in ‘young’ sites to phosphorus (P) limitation in ‘old’ sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status.  相似文献   

15.
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water‐limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridland ecosystems. To test this hypothesis, we experimentally altered the size and frequency of precipitation events during the summer monsoon (July through September) in 2007 and 2008 in a northern Chihuahuan Desert grassland in central New Mexico, USA. Treatments included (1) ambient rain, (2) ambient rain plus one 20 mm rain event each month, and (3) ambient rain plus four 5 mm rain events each month. Throughout two monsoon seasons, we measured soil temperature, soil moisture content (θ), soil respiration (Rs), along with leaf‐level photosynthesis (Anet), predawn leaf water potential (Ψpd), and seasonal aboveground net primary productivity (ANPP) of the dominant C4 grass, Bouteloua eriopoda. Treatment plots receiving a single large rainfall event each month maintained significantly higher seasonal soil θ which corresponded with a significant increase in Rs and ANPP of B. eriopoda when compared with plots receiving multiple small events. Because the strength of these patterns differed between years, we propose a modification of the bucket model in which both the mean and variance of soil water change as a consequence of interannual variability from 1 year to the next. Our results demonstrate that aridland ecosystems are highly sensitive to increased precipitation variability, and that more extreme precipitation events will likely have a positive impact on some aridland ecosystem processes important for the carbon cycle.  相似文献   

16.
为揭示气候变化背景下我国各陆地生态系统净初级生产力(NPP)的时空分布特征与驱动机制,引入重心模型分析2000—2017年我国NPP的空间分布格局变化,并利用相关分析方法结合Thornthwaite Memorial模型定量区分气候变化与人类活动影响NPP的相对作用。结果表明:(1)2000—2017年全国NPP均值为325.86 g C/m2,整体呈现出南方高北方低,东南向西北逐渐递减的特点。(2)近18年全国与各陆地生态系统NPP均呈现增长趋势,全国NPP增长速率为4.4597 g C m-2 a-1,总净增加约0.391 Pg C。空间上全国与森林、草地、荒漠生态系统的NPP重心向东北方向移动,农田与城市生态系统的NPP重心向西北方向移动,表明NPP在该方向上的增速和增量最大。(3)全国NPP在华北、西北地区与四川盆地主要受降水的影响,在青藏高原与云贵高原的东部主要受气温的影响,各陆地生态系统之间城市生态系统NPP对降水响应的敏感度相对最高,荒漠生态系统NPP对温度响应的敏感度相对最高。(4)气候变化和人类活动对全...  相似文献   

17.
Diurnal and seasonal changes in the leaf water potential (), stomatal conductance (g s), net CO2 assimilation rate (P N), transpiration rate (E), internal CO2 concentration (C i), and intrinsic water use efficiency (P N/g s) were studied in grapevines (Vitis vinifera L. cv. Touriga Nacional) growing in low, moderate, and severe summer stress at Vila Real (VR), Pinhão (PI), and Almendra (AL) experimental sites, respectively. In VR and PI site the limitation to photosynthesis was caused more by stomatal limitations, while in AL mesophyll limitations were also responsible for the summer decline in P N.  相似文献   

18.
Clein  J S  McGuire  A D  Zhang  X  Kicklighter  D W  Melillo  J M  Wofsy  S C  Jarvis  P G  Massheder  J M 《Plant and Soil》2002,242(1):15-32
The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C–N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R 2= 0.77, 0.88 for GPP and RESP; uncoupled: R 2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R 2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and simulated NEP (R 2 = 0.36, 0.20 for coupled and uncoupled simulations, respectively) was similar to the correlations at the northern site. To evaluate the role of N dynamics in C balance of black spruce ecosystems across North America, we simulated historical and projected C dynamics from 1900 to 2100 with a global-based climatology at 0.5° resolution (latitude × longitude) with both the coupled and uncoupled parameterizations of TEM. From analyses at the northern site, several consistent patterns emerge. There was greater inter-annual variability in net primary production (NPP) simulated by the uncoupled parameterization as compared to the coupled parameterization, which led to substantial differences in inter-annual variability in NEP between the parameterizations. The divergence between NPP and heterotrophic respiration was greater in the uncoupled simulation, resulting in more C sequestration during the projected period. These responses were the result of fundamentally different responses of the coupled and uncoupled parameterizations to changes in CO2 and climate.  相似文献   

19.
20.
Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate‐driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate‐driven changes in streamflow are likely to reduce abundance of dominant, native, early‐successional tree species, favor herbaceous species and both drought‐tolerant and late‐successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate‐driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号